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ABSTRACT 

Large software systems are expensive to develop and maintain. A 

significant amount of programmer activity in understanding, changing, and 

debugging these systems is information management. To support these activities 

more directly, we have designed a programming environment, called OMEGA, 

that provides powerful mechanisms for accessing and displaying the information 

in a large software system. 

OMEGA uses successful ideas from existing programming environments 

while trying to correct deficiencies. The major deficiency in these systems is that 

programmers can only view and manipulate a single logical representation of pro

grams. 

To support multiple representations, OMEGA uses a relational database 

system to manage all program information. Using a database system provides a 

powerful mechanism for efficient access to a variety of cross-sections of program 

information, as well as providing traditional database facilities such as con

currency control, data integrity, and crash recovery. 

The user interface to OMEGA separates input specification from output 

display, relies on pointing rather than typing, and exploits interaction in semantic 

analysis to detect many errors as soon as they are made. By eliminating the 

traditional textual interface to programs, O~fEGA also allo,vs the unification of 

the different abstraction mechanisms present in traditional programming environ

ments. 

We have experimented with the ideas in OMEGA by designing a relational 

schema for software written in a particular programming language, and by imple

menting a program that transfers existing programs, stored as text, into a data

base managed by an "off-the-shelf" database system. A prototype visual inter

face to the program database has also been implemented. 

The results of this thesis are new models of program representation and 

user interaction for software development systems. The model of program 

representation can be expressed in the relational data model, and software ·can 

therefore be manipulated easily and powerfully using relational calculus. Our 

experimental implementation demonstrates the feasibility of using a relational 

database system, and provides insights into potential problems and how they 

might be solved. 
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In the master's chambers 
they gathered for the feast. 

Chapter 1 

The Software Beast 

They stab it with their steely knives, 
but they just can't k£/l the beast. 

- from the song "Hotel California" by The Eagles 

1.1 Introduction 

Millions of lines of software are written, executed, and debugged every year. 

The cost of producing this software is a large percentage of the cost of using com

puters today, and this percentage is increasing as hardware costs drop. That 

software is expensive to develop and maintain is accepted, but why it is so costly 

and how to reduce these costs is still an issue. 

One reason why software is so expensive is that the amount of information 

in programs today is far too large for one person to absorb and comprehend. 

Furthermore, collections of programs and pieces of programs are combined 

together into software systems, and the interdependencies between these various 

pieces are complex. 

As software systems evolve, they continually grow larger in order to add 

functionality, improve reliability, and enhance performance. This growth 

increases both the amount of information in the system and the complexity of the 

interconnections of the pieces. Making a change to a software system requires an 

understanding of how the part being changed fits into the system. 

With the use of computers growing, more and more programs are being 

built for both existing and new applications. Paradoxically, less and less new 

software is actually being created; most of the code written today replicates or 

nearly replicates the function of existing programs. To reduce the cost of 

software then, programmers need to be able to adapt existing software to new 

requirements and to be able to understand the interdependencies of the pieces of 

a software system. 

A major part of understanding is simply seeing the information relevant to 

what one is trying to understand. In this thesis, we present the design of a pro

gramming system, called OMEGA, that provides mechanisms for seeing and 

manipulating software in a much more powerful and general way than current 

systems. Instead of the traditional linear or hierarchical view, we use recent ideas 

in database systems to provide multiple relational views of the information in a 

software systPm. The relational model provides very powerful operations for 
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describing portions of a database of information. By using it we can give pro

grammers the opportunity to view ·and change a wide variety of cross-sections of 

a software system. 

In the remainder of this chapter~ we present the philosophy behind the 

design of OMEGA, discuss the goals and non-goals of this thesis, and present the

basic results. In Chapter 2, these ideas are put in perspective by looking at other 

programming systems. 

Chapter 3 presents our model of program information and how it can be 

supported by an existing database system; in Chapter 4 we show how this infor

mation is communicated between programmer and machine. Chapter 5 describes 

how we have investigated the feasibility and practicality of our ideas. A com

plete implementation of OMEGA was impractical for the purposes of a disserta

tion. Consequently, we focused on the details of the database interface and the 

basic features of the user interface. In Chapter 6 we summarize our work, sug

gest areas for future research, and draw some conclusions from the principles we 

have developed. 

1.2 OMEGA Philosophy 

The approach to constructing a program in a traditional system, pictured in 

Figure 1.1, begins with a programmer having an idea of an algorithm to imple

ment. An implementation for the algorithm (or part of the algorithm) often 

already exists, but usually the programmer has no way of finding it, or else what 

he or she can find does not function as desired for the particular application. 

To create a program that can be executed, the programmer "encrypts" the 

programming constructs that represent the algorithm (procedures, statements, 

variables, etc.) into a particular programming language. The resulting "crypto

text" is transmitted over an unreliable "wire" (i.e., fingers) to the system, which 

uses a compiler to try to "decrypt" the code and determine the intended combi

nation of programming constructs. 

Primarily because of the textual medium through which programs are 

transmitted, programmers must manipulate software at a physical rather than 

logical level. The concepts of files, lines, and characters have nothing to do with 

software, yet many programming environments force users to communicate in 

those terms. 

In OMEGA, the programmer communicates in software terms such as pro

cedures, statements, and versions. Instead of being entered as independent enti

ties, programs are constructed out of existing software parts. If parts are required 

that are slightly different from existing ones, the existing parts are modified or 

new variations of them are created. Maintenance also requires looking at and 

modifying existing parts of software. Therefore, in OMEGA the activities of pro

gram construction and maintenance are identical. 
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if (x==i) then l 

(cond ((eq x i) ( 

Fi~. 1.1: Tradition a I pr0grqmmr:-r-rnarhiue c·ommunieation. 
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For example, suppose one wished to create a compiler for the programming 

language Adat [Ada 82]. Since the combined language features implemented by 

existing compilers cover at least g5% of the features of Ada, one theoretically 

should be able to build an Ada compiler quickly from parts of existing compilers. 

Furthermore, these parts have been debugged and tested, so they are likely to be 

more reliable than parts built from scratch. 

Unfortunately, existing compilers are hard to understand, hard to interface 

to (even well-defined pieces such as code generators), and it is difficult to con

tinue to share common parts over time. Consequently, the new compiler must be 

built at the same high price as the previous compiler and will require the sub

stantial amount of maintenance that all large programs need. The new compiler 

is another victim of the software "beast" that strikes all large software projects 

today and consumes programmers, managers, and computing resources. 

A single weapon, such as a new language or methodology, cannot stop the 

software beast. The design of OMEGA therefore combines ideas from program

ming languages and software methodologies with principles of database manage

ment and graphics-oriented user interfaces. 

The most unusual aspects of OMEGA are its use and extension of current 

database ideas and its simple, pointing-based user interface. In focusing on these 

aspects we have left unspecified certain decisions, such as the pa-rticular language 

semantics built into the system. 

1.3 Goals and Non-goals 

The dream of being able to quickly build a reliable Ada compiler out of old 

compilers and to have fixes in the old compilers reflected in the new compiler 

exemplifies the fundamental goals of the O!vfEGA system. This thesis is only 

part of the work necessary to achieve those goals. We did not try to implement 

a complete system nor try to measure the effect this kind of system would have 

on programmer productivity. 

We can only argue qualitatively that the activities of software construction 

and maintenance ought to be unified, and that a system that facilitates reuse of 

existing software will substantially improve programmer productivity. The pur

pose of this thesis is to solve some of the problems that lie within this framework 

through the design and experimental implementation of a programming system 

that provides powerful mechanisms for viewing and manipulating software. 

We are not concerned here with the time and space costs of OMEGA. In 

the five years or so it may take to build a production OMEGA system, comput

ing cycles and storage will become at least one order of magnitude cheaper than 

they are now. Also, it is usually easier to make a general solution fast and small 

than it is to make a fast and small solution general. 

tAda is a registered trademark of the Ada Joint Program Office, U.S. Government. 
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Nonetheless, it is important to make sure a design does not rely on any 

inherently expensive components. "In the case of OMEGA the most important 

question about performance is whether the mechanism that is used to manipulate 

software (a relational database system) is too expensive. Another goal of this 

thesis, then, is to implement enough of OMEGA to discover performance prob

lems and determine how they might be overcome. 

1.4 Results 

This work contributes a new model of program representation and user 

interaction for software development systems. The representation of program 

information to the user provides powerful operations on arbitrary cross-sections 

of programs. We show that this model can be described with relational calculus, 

and therefore that program information can be managed by a relational database 

system. 

Our model of user interaction takes advantage of a relatively recent style of 

entering information into a computer- pointing. Pointing is a quick, precise way 

of identifying and rearranging objects that removes the need for parsing and 

name resolution. It therefore allows the facilities of various programming 

languages to be unified and extended. Programs can be displayed in the form 

desired by the user rather than in a form required by a compiler. 

The model of program representation has been explored further by actually 

implementing an interface to the relational database system 1!\GRES [Stone

braker, Wong, and Kreps 76]. A schema for a particular programming language, 

called Model [Morris 80], has been designed and a program written that translates 

existing Model program text and stores it in an INGRES database. Another pro

gram has been written that provides views and allows updates of the information 

in the database. 

The implementation demonstrates the feasibility of using a relational data

base system and therefore the practicality of our theoretical model of program 

representation. It also provides an insight into potential performance problems 

and how they might be solved. 





Chapter 2 

Historical Perspective 

I tip my hat to the new constitution, 
take a bow for the new revolution, 
smile and grin at the change all around, 
pick up my guitar and play 
just like yesterday, 
then I get on my knees and pray 
we don't get fooled again. 

-from the song "Won't Get Fooled Again" by The Who. 

2.1 Introduction 

6 

In designing OMEGA we have tried to use and generalize the positive 

aspects of existing programming systems while avoiding ·the negative ones. For 

example, lnterlisp [Teitelman and Masinter 81] is an integrated environment; it 

has a single, consistent user interface and a uniform representation of programs. 

These are clearly good attributes for a programming system, therefore we 

designed OMEGA to be integrated. However, unlike Interlisp, which is centered 

around a list-oriented database, OMEGA is based on relations, thus providing 

more powerful and efficient operations. 

Ideally, whether a feature is good or bad should be measured by the quanti

tative effect it has on programmer productivity. Unfortunately, not only is this 

effect hard to measure, it is difficult to measure productivity itself. The tradi

tional measure of programmer productivity is the number of lines of code written. 

However, this number is misleading when building upon existing software rather 

than writing new software. 

For example, a programmer who adds or changes 100 lines in an existing 

10,000 line program will produce a working version much faster than someone 

who writes the 10,000 line program from scratch, but much slower than someone 

who writes a 100 line program from scratch. The larger program performs much 

more than the 100 line program, so the programmer who modifies the existing 

software should be considered more productive. 

Counting the number of lines modified is not an accurate measure either. 

For example, changing the name of a variable changes every line in which the 

variable appears, but is not as difficult or useful as a more substantive change 

that involves the same number of lines. 
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Even if it were feasible to measure the effect of a particular system on pro

grammer productivity, it is very difficult to construct an experiment that com

pares existing systems while factoring out their idiosyncrasies. We therefore turn 

to a qualitative analysis. 

To analyze and compare programming systems, it is necessary to use a 

common model of the facilities that the systems provide. Systems as different as 

UNIXt [Kernighan and Mashey 81) and Smalltalk [Goldberg and Robson 83] can

not be compared by comparing respective editors, languages, or debuggers. A 

more general ~ode! is needed to take into account things such as the fact that 

Smalltalk provides an integrated environment whereas U:NlX does not. 

To provide the necessary generality and completeness, we model program

ming as a communication process. In the remainder of this chapter, we describe 

this model and then use it as a framework for discussing the programming sys

tems that have influenced the design of OMEGA. 

2.2 Communication Model 

Programming is a communication activity between programmer and com

puter (as well as among programmers). As such, it has the three basic com

ponents: 

• medium, 

• protocol, and 

• data. 

The medium of communication is the physical connection, e.g., punched 

cards, printer, terminal, mouse, or voice. The protocol is the way data is 

transmitted through the medium to and from the machine. For the programmer, 

this includes both how individual commands are specified and the order in which 

commands are applied to perform a particular task. For the system, the protocol 

determines how commands and operands are interpreted, and where responses are 

sent. In a screen-oriented system, for example, the protocol determines where on 

the screen the response to a command is displayed. 

The final component of communication is the data that is exchanged. 

There are two important aspects of the data: the kinds of objects that are com

municated, and the operations that can be performed on the objects. The kinds 

of objects manipulated through a text editor, for example, are files, lines, words, 

and characters; typical operations allowed include insert, delete, and replace. 

Programmers manipulate both objects associated with the definition of a 

program, called "program" or "static" data, and objects associated with its exe

cution, called "runtime" or "dynamic" data. Runtime objects are represented 

fUNIX is a registered trademark of Bell Laboratories. 
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and manipulated m terms of the ~nderlying machine on which the program 1s 

executing. 

Objects may have constraints placed on their values to ensure that they are 

meaningful. For example, the left-hand side of an assignment statement can be a 

complicated expression, but it must be an expression that will correspond to a 

storage location when the program is executing. 

2.3 Individual Systems 

Using our communication model of programming, we now turn to a discus

sion of the particular systems that have influenced OMEGA. For each system, 

we present an overview followed by an analysis of the features that we have tried 

to include or avoid in the design of OMEGA. This analysis is in terms of the 

communication model, thereby allowing us to focus on the fundamental elements 

of each system and avoid a myriad of specific details. 

2.3.1 UNIX 

The UNIX programming environmentt is one of the most popular tool-based 

systems. A tool-based system provides a number of individual programs that 

each aid some part of the overall task. Ideally, each tool is small enough that it 

is relatively uncomplicated to build and use, while the combination of tools pro

vides substantial power for developing and maintaining software. 

The nucleus of a tool-based programming system consists of an editor for 

entering and modifying programs, a compiler for translating programs into an 

executable form, and a command interpreter for executing programs (including 

the editor and compiler). In addition, UNLX provides tools for building a 

configuration of a system, managing versions of modules in a system, interactive 

debugging, and indexing symbol definitions. Figure 2.1 shows the organization of 

the U~1X environment. 

One of the advantages of the tool-based approach is that tools can easily be 

added to the system and users can build tools for their own particular needs. 

This ability is facilitated by the pipe and file redirection operations provided by 

the U:N1X command interpreter that allow tools to be easily combined into new 

tools without modification. Thus, programmers can use existing programs 

instead of re-implementing them, one of our main goals for O:tviEGA. 

Despite these desirable features, there are several problems with tool-·based 

systems in general and U~1X in particular. First, if more than one tool is 

interactive (e.g., editor and command interpreter) then there is more than one 

user interface. Not only does this replication lead to varieties and inconsistencies 

that the user must remember, but each tool must have a command line scanner, 

parser, and execution processor. For example, the UNIX command interpreter 

tWe do not distinguish between the UNIX environment and the programmer's workbench 

(PWB/UNIX) [Ivie 77]. 
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expands special characters in filenames to match files the user can access. The 

U:NlX editor vi [Joy 79] duplicates some of the matching facilities in processing 

commands that involve filenames, but the facilities are not completely consistent 

with those provided by the command interpreter. 

In terms of the communication model presented earlier in this chapter, the 

problem is that the user needs different protocols to perform the same operation 

in different contexts, and may not even be able to perform the operation in some 

contexts. The programming system must either implement these multiple, redun

dant protocols or not consistently provide access to all the operations. 

The most important problem with UNIX is that the objects that a pro

grammer enters and manipulates are at a physicallevel, namely text. There are 

several levels of text (files, lines, words, characters), but any correspondence 

between these objects and programming entities such as modules, statements, or 

variables is only by convention, and is not enforced by the system. Since only 

text is stored, semantic interpretation of the information (e.g., the binding of 

names and propagation of types for expressions) is expensive. 

Historically, text was a natural and compaet way to represent programs 

communicated through the medium of punched cards. As Figure 2.1 shows, 

UNIX has taken advantage of the availability of on-line storage by augmenting 

the program text with configuration files, symbol definition indices, and 

differential files for restoring previous versions. Except for information about pre

vious versions, this data is already available from the program text. It is repli

cated to significantly improve the performance of the corresponding tool. For 

example, the configuration file contains dependency information that can be 

determined from the program text, but it is too expensive to have the system 

builder analyze all the program text. 

The problem here is not that the information is replicated; this is a stan

dard technique for improving performance. The problem is that usually the user 

has to maintain the redundant information by hand because it is too inefficient to 

have it continually recomputed. 

In summary, UNIX is a popular tool-based environment with a simple, 

text-oriented representation of data and a powerful command interpreter. The 

environment is easy to extend and existing tools can be combined in flexible ways 

to perform new tasks. However, the tool-based approach leads to a proliferation 

of user interfaces (protocols). Representing programs as text provides a single, 

linear view of programs, which makes it difficult for tools to manipulate small 

portions of programs. Consequently, these portions are often replicated and 

therefore likely to become inconsistent. 
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2.3.2 Interlisp 

In contrast to the tool-based approach of UNIX, lnterlisp provides an 

integrated environment. All the pieces of the system share a common user inter

face and a common representation for programs and data. Facilities such as 

error recovery for misspelled words and the repeating of previous commands can 

be used when editing, debugging, or executing programs. 

Like UNIX, the facilities of Interlisp can be extended through the 

modification of an existing piece of the system. Since .Interlisp already contains 

many interconnected pieces, there is a package called Masterscope that helps pro

grammers see the interconnections between modules. 

Masterscope has an English-like interface for questions about the structure 

of a program. For example, to find the functions that use the variable x one 

might type 

(who uses x) 

Masterscope also works in conjunction with the Interlisp editor. For exam

ple, one can ask to edit functions that use the variable x or satisfy some predi

cate. .More powerful editing can also be performed using the program informa

tion maintained by ~1asterscope. For example, it is possible in a single command 

to replace all occurrences of the variable named x with the variable y. 

The predicates that can be specified to Masterscope are described by a set 

of templates that can be extended by the user. The result is an ad hoc language 

for a particular set of queries on program information. 

The structure and semantics of objects in Interlisp is based on lists, and the 

operations provided include creating, extending, and searching these lists. Lists 

are a simple data structure that provide a way of grouping objects analogous to 

sets, but are inefficient to search. As with text in UNIX, to make any kind of 

analysis of the program it is necessary to either scan through all program infor

mation or have the desired subsets of information replicated. lnterlisp also does 

not allow constraints on programs (e.g., the number and types of parameters to a 

function) to be enforced automatically prior to execution. 

One nice feature of the Interlisp environment is that runtime data has the 

same representation as program data. This feature, together with the uniform 

user interface, makes Interlisp a much better environment for debugging than 

tool-based systems such as UNIX. Unfortunately, the price paid by lnterlisp is 

that execution is interpretive and therefore an order of magnitude slower than it 

be if it were compiled. It is possible to compile Interlisp programs, but doing so 

disables the high-level debugging facilities. 

OMEGA is designed to be like Interlisp in that it has a single protocol for 

manipulating a uniform representation of programs and data. However, the pro

tocol in Interlisp is text-based, which requires parsing commands and resolving 

names. Processing text input opens up the possibility for syntactic and semantic 
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errors, something we want to avoid: 

The major weakness of Interlisp is its representation of programs as uncon

strained lists of objects. List operations are not powerful enough to provide 

efficient access to the wide variety of program views that are useful in manipulat

ing programs. For example, there is no general mechanism for quickly indexing 

on an element of a sublist within a larger list; this mechanism would be useful in 

processing requests such as "edit all functions that expect more than one argu

ment". 

2.3.3 Smalltalk 

Smalltalk, like lnterlisp, is an integrated environment. However, it is very 

different from both Interlisp and UNIX in its communication medium and proto

col. Programmers communicate with U~lX or lnterlisp through a conventional 

keyboard and CRT; with Smalltalk they use a large screen and a pointing device 

(e.g., a mouse). 

This medium allows a protocol in Smalltalk based on pointing at objects 

and displaying output for different activities in separate "windows", independent 

rectangular areas on the screen. The use of a large screen in conjunction with 

windows and pointing makes attractive the use of menus for selecting commands 

and data. Previous menu-based systems such as UCSD Pascal [Softech 79] used 

only a small portion of the screen for the menu and allowed access to only one 

menu at a time. As a result, using menus was tedious and systems like UNIX 

have disdained them. 

Pointing is an important mechanism because objects can be denoted 

without the user remembering and typing a string of characters, and without the 

system having to resolve the name using some form of symbol table. A mouse or 

similar pointing device makes pointing feasible since it allows the user to move 

the cursor quickly and accurately. 

Smalltalk also provides a different structure and semantics for objects than 

previous systems. Objects are grouped hierarchically into classes; each class is 

itself an object and, except for the root class, belongs to another, higher-level 

class. Associated with each class is a set of operations that are defined on objects 

in that class. 

Binding of operator names to operations is done entirely at runtime, mean

ing constraint checking cannot be done before execution begins. This dynamic 

binding also causes a severe execution performance penalty. 

Smalltalk is a single-user environment; there are no aids for developing 

multi-user projects. There is nothing like Masterscope to help a programmer see 

the interconnections between pieces of programs. The intention is to use 

Smalltalk for quickly implementing and testing out ideas. Once the ideas work a 

complete implementation can be done in a more traditional environment. 
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We do not believe this dicho~omy between a prototyping environment and 

a production environment is either necessary or advantageous. The fastest way 

to produce any impleiD€ntation of ideas is to use and modify existing implemen

tations. In OMEGA both prototype and production software is evolved froPl 

existing software. The difference is that a prototype is built quickly from pieces 

that might only approximate a desired function, whereas the production software 

has refined the pieces to provide a complete and more precise implementation. 

The importance of Smalltalk is in its medium (large screens and mice) and 

associated protocols (pointing, windows, and menus). We have tried to use and 

improve upon these concepts in designing O:MEGA. Chapter 4 discusses how the 

use of pointing is generalized in O:MEGA. 

2.3.4 Cornell Program Synthesizer 

Interlisp and Smalltalk are both integrated environments for simple, uncon

strained languages. The Cornell Program Synthesizer [Teitelbaum and Reps 82] 

was one of the first attempts to build an integrated environment for a language 

that has complex syntactic and semantic constructs. It features syntax-directed 

editing, incremental semantic analysis, and reversible execution. Like Smalltalk, 

the Synthesizer is a single-user environment with no facilities for handling large, 

multi-programmer systems. 

To provide an integrated environment for the language PL/C [Conway and 

Constable 76], a simplified version of PL/1, the Synthesizer provides a uniform 

command language in which some of the commands create syntactic constructs. 

For example, the command "WH" causes a prototype while loop to be inserted 

where the cursor is located in the program. 

In the Synthesizer, the visual representation of a syntactic construct is 

called a "template", and templates can contain placeholders for other objects. 

For example, the while loop template might look as follows: 

while condition do 
statement 

Here both the condition and statement are holes to be filled with a boolean 

expression and simple or compound statement respectively. 

Unlike other syntactic constructs, expressions are entered as text and 

parsed. This distinction was done to avoid requiring a large number of com

mands to produce a comparatively small amount of code. Semantic analysis in 

the Synthesizer is done ad hoc. 

An important idea behind the Synthesizer is that there is a separation 

between the way a program is entered and the way it is displayed. This separa

tion is the key to avoiding the problem of integrating an environment for a 

language with a non-trivial syntax. In the Synthesizer this facility is not extensi

ble; in OMEGA we allow the display templates and programming constructs to 
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be defined by the user. This facility allows one, for example, to define a variety 

of loop constructs that are useful for solving common problems. 

2.3.5 Gandalf / IPE 

Although the Synthesizer provides an integrated environment for a more 

structured language than Smalltalk or Interlisp, it still interprets execution and 

does not support development of large, multi-programmer systems. The Gandalf 

project [Habermann, et al. 82] is an attempt to provide an integrated environ

ment that executes compiled code and supports multi-programmer systems. 

The part of Gandalf that interfaces directly to the programmer is called the 

Incremental Programming Environment [Medina-Mora and Feiler 81]. The IPE 

user interface is similar to the Synthesizer, except expressions are built the same 

way as other constructs, not as text as in the Synthesizer. This uniformity 

makes it easier for IPE to support a number of different languages since there is 

no parsing done at all. Semantic analysis, however, is still done ad hoc. 

One of the traditional advantages of interpreting over compiling is that exe

cution can begin almost immediately without waiting for code generation and 

linking. IPE performs code generation on one function in the background while 

the user is editing another. Since editing as an activity is rarely CPU bound, this 

technique allows the load of compilation to be distributed more evenly over time 

and helps avoid long delays for the user. 

Like the Synthesizer, Gandalf is construction-based; it is designed to sup

port the creation of new software. Although there are aids to create large sys

tems, the user interface and data model provide no mechanism for easily querying 

or viewing the interconnections within a program. 

Both Gandalf and the Synthesizer provide a hierarchical model of programs. 

This model is natural for top-down development but unsatisfactory for program 

maintenance or improvement. For example, when adding a parameter to a pro

cedure one would like to be able to view and modify each call to the procedure. 

This view is not easily attainable with only a hierarchical view of the program. 

Gandalf also separates operations on objects within modules from opera

tions on modules and objects that contain modules. For example, the 

configuration and version control facilities work with modules as the basic ele

ment whereas IPE can only manipulate the information in an individual module. 

The Cedar system [Deutsch and Taft 81] also makes this separation, but we feel 

that this is an artificial separation that hinders rather than helps programmers. 

Modules are one form of grouping objects in a program. Other forms 

include procedures that use a given module, statements that reference a variable, 

and variables that may be modified by a particular module. What group of 

software objects a programmer wishes to see depends on what the programmer is 

doing. The hierarchical structure of modules is useful in top-down development, 

but when debugging, modifying, and extending software other kinds of grouping 
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are necessary. 

2.3.6 Programmer's Apprentice 

The programmer's apprentice (PA) [Waters 82] is aimed at augmenting 

rather than replacing existing programming environments. The idea is to use a 

software knowledge base to make it easier for programmers to construct, undex:=

stand and modify programs. 

The philosophy of the PA is similar to that of OMEGA. Using the PA, a 

programmer manipulates plans, common programming constructs with associated 

semantics, to construct and modify programs without concern for the details of 

the code associated with a plan. The system can automatically generate code 

from plans, extract intended plans from existing code, and display plans graphi

cally on a terminal. 

Using a library of constructs such as plans during software development 

and maintenance is one of the goals of O~fEGA; however, our approach is very 

different. Interaction with the PA is through typing pseudo-English commands, 

whereas O~IEGA is menu and pointing based. Our approach eliminates the 

problem of misinterpreting the structure or semantics of commands and automat

ically presents the possible options to the user. 

The library of plans is an ad hoc database that the PA accesses as it inter

prets commands; in O:MEGA we use a general-purpose database system. By 

doing so, we do not have to implement efficient access methods or manage secon

dary storage, and the user can express a wide range of queries. 

In time it may be possible to combine ideas from both the PA and OMEGA 

to provide both flexibility in accessing the database and intelligence in interpret

ing the knowledge that is in the database. However, in this thesis we are focus

ing on the problems that are involved in supporting flexible access to, rather than 

human-like interpretation of, programs. 

2.4 Conclusions 

There are many more systems we could discuss, but they are similar to one 

of the systems we have analyzed. Although the details of the systems we have 

presented are very different, the systems are actually quite similar in the , .... ay 

that programmers communicate with them. Except for Smalltalk, they all use a 

conventional terminal as the medium. Except for UNIX, each system is 

integrated, meaning a. single protocol or command interface for the user. The 

Smalltalk protocol is also different in its use of pointing, menus, and windows. 

The structure of the data that the programmer manipulates is either text 

(UNIX), lists (Interlisp), or hierarchical (Smalltalk, Synthesizer, and Gandalf). 

Data integrity is either checked periodically by a compiler (UNIX), incrementally 

by the system (Synthesizer and Gandalf), or mostly left to the user (Interlisp, 
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Smalltalk). The incremental chec\cing that systems perform 1s implemented ad 

hoc and therefore difficult to extend or change. 

Smalltalk, the Synthesizer, and the IPE part of Gandalf are all 

construction-oriented; the operations they provide on data are aimed at creating 

and deleting objects in a small, contiguous piece of a program. They do not pre

vide facilities for maintaining and evolving software that is viewed and modified 

by a number of programmers. 

UNIX and Interlisp do provide some help, but because of their. representa

tion of programs, the operations they provide are inadequate and low level. In 

UNIX, for example, the basic data structure is a file of text. By convention, each 

module is stored in a separate file. Programmers must decide on the physical 

implementation of sharing part of a module, whether it be to periodically copy 

files or to share a single file that contains conditional compilation tags to identify 

non-shared portions. 

The major problem of all these systems is that their representation of pro

grams is not well-suited to the needs of a programmer working on a large 

software system. Text-oriented systems provide a physical rather than logical 

view, and tree-oriented systems provide a single logical view that does not match 

the view a programmer needs when maintaining and enhancing a software sys

tem. 

In the next chapter we describe the representation that OMEGA presents, 

and show how this representation provides the functions of the systems presented 

here as well as facilities these systems cannot. Recognizing that the manipulation 

of program information is an instance of the general problem of data manage

ment, we use a general-purpose database system to provide a powerful set of 

operations on ·software and free OMEGA from storage management concerns. 





Chapter 3 

The Program Database 

Prisoner: lVhat do you want? 
Number 2: lVe want information. 
Prisoner: You won't get it. 
Number 2: By hook or by crook, we will. 

- from the television show The Prisoner 

3.1 Introduction 
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Software constantly changes as new features are added, bugs are fixed, and 

new hardware technology is exploited. Programs are not self-contained; they use 

and interact with algorithms, data structures and subroutines from existing pro

grams or libraries. Consequently, programmers need to understand existing 

software in order to use and modify it to meet new requirements as well as to 

create additional, compatible, software. 

Most programs are too large to understand in complete detail; hence, pro

grammers select different views to understand different aspects of them. Under

standing the implementation of a procedure may involve looking at its state

ments; understanding how a variable is manipulated may involve looking at the 

statements that access the vari-able; understanding how a running program 

reaches a certain state may involve looking at statements in the order in which 

they are executed. 

In the previous chapter we saw that current programming systems do not 

support these and other views of large collections of software. To provide the 

most powerful mechanism for describing views, OMEGA needs a general solution 

to the problem of supporting multiple logical views of a large amount of informa

tion. 

General-purpose database systems provide this solution with facilities for 

defining views of a database and, through the processing of requests called 

queries, for retrieving views from the database. By using a database system to 

manage procedures, statements, variables, and the other information that makes 

up a program, 011EGA avoids constraining the ways in which a programmer can 

view software, and avoids duplicating the function of a database system. 

Database systems provide many other useful facilities in addition to the 

ability to retrieve and define general views of data. They manage permanent 

storage, support efficient data access, provide concurrency control, attempt to 

recover from crashes, and try to ensure the integrity of the data. All of these 
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problems arise in software development systems; using the work of database 

researchers allows us to address issues specific to programming environments. 

In the remainder of this chapter we describe the representation of programs 

that O:MEGA presents to the user, and how this representation can be translated 

into a schema for a traditional database system. This representation includes the 

integration of runtime information into the database, thereby providing support 

for debugging activities. We suggest two extensions to database systems to 

increase the power and improve the efficiency with which program information 

can be accessed. Finally, we show how OMEGA uses the database system to 

support traditional programming operations, including editing, symbol table 

management, and configuration building. 

3.2 Semantic Data Model 

Two popular program representations are text and trees. Text is expensive 

to extract program semantics from and, therefore, inefficient to use in processing 

most queries. Simply distinguishing comments from program statements requires 

scanning each character. Non-trivial queries, such as finding all the uses of the 

"+" operator in which both operands are integers, requires parsing and semantic 

analysis of the entire program. 

Update operations on program objects (statements, expressions, and vari

ables) must be translated by the programmer into operations on text objects 

(lines, words, and characters). This translation can be complicated; for example, 

changing the name of a variable requires string substitution every place the vari

able is used, which is not necessarily the same as every place the string appears. 

The hierarchical view provided by tree-oriented systems is better than .: h~ 

linear view of text-oriented systems, but is still only a single view and therefore 

inadequate. Suppose, for example, a programmer wanted to port some software 

to a new machine. In doing this, the programmer might wish to look at all the 

constants defined throughout the software. However, it is likely that the con

stants would have been defined in the different modules where they logically 

belonged. A system that provides programmers only one organization of pro

grams cannot satisfy the variety of activities that make up software development 

and maintenance. 

The program database is so large that the complete structure of it is not of 

interest to programmers. At any given time, depending on the particular task, a 

programmer needs to see some cross-section of the database that contains the 

relevant objects. \Ve call these cross-sections program threads, as they 

correspond to strands of connected objects in a large fabric of software. 
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Text and tree organizations are two kinds of program threads. Other 

examples include the following: · 

• statements that reference a variable 

• procedures that use a module 

• statements executed for certain input 

• modules written before a certain date 

• constants defined for a particular machine 

The concept of a program thread captures many separate facilities from 

current programming environments, including structure-oriented editing, module 

dependency analysis, cross-reference listings, call graph generation, version his

tory manipulation, and execution trace generation and analysis. In addition, 

there are many other possible program threads corresponding to particular infor

mation in which a programmer might be interested. For example, one might 

wish to see the uses of an I/0 procedure where the parameter designating a file 

has a particular value. 

The use of program threads also eliminates redundancies that arise from 

having separate facilities. For example, both module dependency analysis and 

cross-reference listing generation require preliminary analysis in text or tree sys

tems. Frequently this analysis is replicated for each facility, and therefore is 

likely to become inconsistent. 

Using OMEGA, programmers define, retrieve, and update objects and 

threads of objects. These operations provide a semantic model of software that 

supports many different views of programs, and therefore can support the various 

activities that are performed during the different stages of software development. 

3.3 Picking a General-Purpose Database System 

To use a general-purpose database system to implement program threads, it 

IS necessary to map the program thread model onto a general-purpose data 

model. 

The three data models whose implementation has been pursued most exten

sively are referred to as the relational, network, and hierarchical modelst. The 

relational model is based on collections of objects, called relations, where each 

collection is made up of homogeneous objects, call€'d tuples. A tuple is made up 

of fields that contain individual values. One or more of the fields form a logical 

key, whose value distinguishes the tuple from other tuples within the relation. A 

small number of powerful operators are defined on relations that allow general 

queries and views to be specified. 

tFor background and a more complete discussion of these data models, see [Ullman 80]. 
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In the network model, data is represented by nodes of information and links 

between related nodes. The resulting graph has the advantage of more naturally 

representing program information; however, network systems do not provide the 

quer~ processing and view definition capabilities of relational systems. 

The hierarchical model is a special case of the network model; data is 

organized as a tree rather than a general graph. This restriction often makes it 

possible to access data more rapidly than in other models. Since program threads 

include non-hierarchical information, both the network and relational models are 

better suited for our needs than the hierarchical model. 

Other data models, such as the entity-relationsh£p model [Chen 76], have 

been proposed to add semantic extensions to the relational model. The entity

relationship model provides a semantic model that is very close to program 

threads, with program objects corresponding to entities and threads correspond

ing to relationships. However, work on this model has, until recently (e.g., [Cat

tell 83]), focused on semantic rather than implementation issues. 

Our choice was to have OMEGA use a relational database system rather 

than build query and view capabilities on top of a network system, and therefore 

offer programmers flexibility in describing views of programs without having to 

provide our own query processor. This choice allowed early experimentation with 

program queries, while sacrificing performance and elegance. In the next section, 

we show how program information can be stored in the traditional relational 

model and suggest enhancements to help manage this kind of information. 

3.4 Storing Program Information 

To process queries on program semantics, it is necessary to have the infor

mation that a compiler builds during its parsing and semantic analysis phases. 

This information consists of some form of program graph and symbol table. Fig

ure 3.1 shows part of the program graph for the following program fragment: 

prevmax := max; 
if a> b then 

max:= a; 
else 

max:= b; 
end if; 

The tables in Figure 3.2 show how the information in the graph in Figure 

3.1 could be stored in a relational database system. For the sake of clarity we 

have simplified this description by omitting some relations, such as those associ

ated with type information, and using names rather than numbers for certain 

values. A complete schema for program information is described in Chapter 5. 
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prevmax a max 

Fig. 3.1: Program graph for fragment. 
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Each tuple in the statements relation corresponds to a program statement. 

We associate a unique identification (UID) with each tuple, represented by a 

number, and use this number to refer to the tuple from other tuples. A UID is a 

• logical key for a tuple in a particular relation, since it uniquely identifies the 

tuple within the relation and does not depend on the tuple's physical location. 

Since some statements can contain an arbitrary number of other state

ments, this key is required to associate all of the contained statements with the 

containing statement. Statements may be nested in other statements to arbitrary 

depth. UIDs thus also provide a way to represent a hierarchy in a relational 

database. 

Many program objects are like statements in that they may contain objects 

of their own kind. We call data structures to represent such objects recursive 

data structures. UIDs represent instances of recursive data structures from 

within other structures. 

OMEGA allocates UIDs and can request a tuple from the database system 

using its relation and UID. Unfortunately, this interface does not allow the data

base system to retrieve the data efficiently nor does it allow OMEGA to perform 

the queries it needs. 

Consider, for example, the relations introduced in Figure 3.2. If we wanted 

to print a tuple from the 1jlhens relation, we might use the following algorithm: 

Prin tStrin g( "if "); 
PrintCondList( if-condition-list); 
if if-else-part -=rf 0 then 

PrintString(''else' '); 
NewLine; Indent( +4); 
PrintObject( if-else-rei, if-else-id); 
lndent(-4); NewLine; 

end if; 
PrintString("end if"); 

A straightforward implementation of this code generates separate queries 

for the if-condition-list and if-else-part fields of the ifthens tuple. Performing 

several independent queries is more expensive than a single, larger query because 

the database system can optimize operations for the larger query. There is also 

an inherent overhead for a query that involves reading the schema and maintain

ing information for concurrency and crash recovery. To display a procedure may 

involve traversing several hundred objects; trying to process the resulting several 

hundred queries quickly enough to avoid making the programmer wait could 

require an unnecessarily large amount of processing power. 

An alternate approach is to add an attribute to each of the relations to 

indicate in which procedure they are located. Before processing any part of a 

procedure, one query could be used to retrieve all the tuples associated with the 

procedure into memory. The individual queries are then performed on this in

memory data. Although this provides more efficient access, the mechanism is 
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outside the normal database syste~, and thus only a short-term solution. 

This approach raises some problems that must be understood before sug

gesting extensions to the database system to· replace it. Retrieving all the infor

mation at once for a large procedure is undesirable because the user must wait 

for the entire procedure to be ·retrieved before viewing any part of iL This wait 

would be particularly annoying if only a simple query needed to be done. For 

example, to display the statements that reference a particular variable, it is not 

appropriate to retrieve all the statements in all the procedures containing refer

ences to the variable. 

When traversing information in the database, what we would like is for the 

database system to prefetch and cache tuples that are about to be referenced. 

Since the system is not aware of the semantics of the UIDs, it will be difficult for 

it to know which tuples are best cached in memory. The standard cache con

sistency problems must also be addressed. 

A second issue is raised by the recursive nature of program structures. 

Consider a query that asks for all the statements that reference a particular vari

able. To discover whether or not the variable is in the statement, this query 

needs to examine the expressions in a statement and all subexpressions of those 

expressions, to whatever depth expressions are nested in the statement. There is 

no way in the relational model to express queries that involve a transitive closure. 

Therefore, such queries can only be made through separate queries for each stage 

of the closure. 

3.4.1 Managing Recursive Data Structures 

The issues of efficient access to, and transitive closure queries on, recursive 

data structures can be solved only by having the database system understand the 

recursive nature of the data. \Ve propose to supplement the standard database 

value domains of integers, strings, etc., with a domain of tuple references. Values 

in this domain would provide information the database system could use to pre

fetch or retain tuples likely to be accessed. In addition, the transitive closure of a 

tuple reference can be defined and used in queries. 

Tuple references are similar to foreign keys [Codd 70], and unique ids as 

proposed in [Codd 79]. \Ve have extended these ideas, allov .. ·ing tuple references 

to be manipulated through the query language; such usage may cause implicit 

join operations to be processed. The GEM database language [Zaniolo 83] has an 

equivalent facility. Unlike this and other work, whose motivation has been to 

provide a better semantic data model, our motivation has been to improve the 

performance of a series of small queries that are the result of traversing a portion 

of a graph. We now examine this proposal in more detail. 
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3.4.2 Tuple References 

A tuple reference denotes a logical key for a tuple in some relation in the 

database. We use· the notation "A = rer' to define the attribute A as a tuple 

reference. The only difference between tuple references and other fields of rela

tions is that their values are generated and interpreted by the database system. 

All normal database operations apply to tuple references. Additional operations, 

described below, are also valid. 

Although there are several possible implementations of tuple references, we 

assume that it is always possible to determine in which relation a referenced 

tuple is by saying relation( r), where r is the tuple reference. Thus, without loss 

of generality, we may think of a tuple reference as a pair (relation, tuple UID), 

even if the implementation is otherwise. The value of a tuple reference is gen

erated automatically and is independent of the physical location of the tuple. 

One distinguished value that any tuple reference can have is a reference to no 

tuple, similar to the value nil in many programming languages. 

Often an attribute always refers to a particular relation; in this case we use 

the notation "A= ref R", where R is the name of the relation. This notation 

implicitly defines an integrity constraint that restricts the attribute to refer to 

tuples in one particular relation. It also improves the readability of attribute 

definitions and allows the database system to perform optimizations such as 

minimizing the space needed to store a tuple reference. 

·whereas the tflhens relation in Figure 3.2 would be defined in INGRES as 

ifthens (id=integer, condlist=integer, else-rel=integer, else-id=integer), 

it can be defined using tuple references as 

ifthens ( condlist = ref condlists, else = ref). 

The value of a range variable in a query is the tuple reference for a tuple in 

the associated relation. For instance, the following example creates an iflhens 

tuple for an if-then statement (which requires a condition list, and an else state

ment): 

range of c is condlists 
range of e is statements 
append to ifthens (condlist=c, else-rel="statements'', else-id=e) 
where {predicates to select the c and e we want} 

The language we use for database operations here and in examples throughout 

this chapter is QUEL, the query language for INGRES, with extensions for tuple 

references. 
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In addition to normal database operations, it is possible to dereference a 

tuple reference by qualifying it with an attribute name. For example, the follow

ing query finds the if statements that have a condition that is simply a boolean 

variable: 

range of i is ifthens 
retrieve (i.all) where 

i.condlist.cond-rel = "variables" 

If the specified attribute of a tuple reference is itself a tuple reference, it too may 

be dereferenced. It is therefore possible to qualify "i.condlist" as a normal range 

variable (in this case, of the condlists relation), and refer to its cond-rel attribute 

as "i.condlist.cond-rel". 

A dereference is a simple notation for expressing an eqm-Jom, with the 

result known to contain a single tuple. Using normal notation, the query in the 

example above is expressed as 

range of i is ifthens 
range of c is condlists 
retrieve (i.all) where 

i.condlist = c and c.cond-rel = "variables". 

This form is more complicated than the form using a dereference, and therefore 

more difficult for the database system to recognize as the retrieval of an indivi

dual tuple. 

If the database system retrieves tuples only on demand, then the same per

formance problems arise dereferencing tuples that occur ,...-ith the use of a 

sequence of simple queries. However, tuple references provide the information 

necessary for the database system to apply optimization and caching techniques 

to improve performance. 

3.4.3 Multi-relation Tuple References 

It is often advantageous to have an attribute that can refer to one of 

several relations. For example, a tuple in the statements relation contains a 

reference to a tuple in one of the individual statement relations, such as asgstmts 

or ifthens. Although storing references to different relations presents no problem 

to the database system, it is necessary to provide a means to determine the rela

tion that contains a tuple designated by a tuple reference. This facility is pro

vided by the relation operator. For example, to find all the if statements we 

would say 



range of s is statements 
retrieve (s.all) where 

relation(s.value) = "ifthens" . 
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In the case where a tuple reference should refer to a subset of the relations 

in the database, an integrity constraint can be used to restrict the possible rela

tions. For the statements example, this constraint could be expressed as 

range of s is statements 
define integrity on s is 

relation(s.value) = "asgstmts" or 
relation(s.value) = "ifthens" or 
relation(s.value) = "whilestmts" or 
relation(s.value) = "forstmts" 

3.4.4 Transitive Closure Queries 

Some properties of programs are transitive. For example, if a variable is 

used in an expression on the right-hand side of an assignment statement, then it 

is also used in the assignment statement. \Ve define the relation 

uses( user = ref, thing = ref) 

and add the tuple ( e, v) to it where e refers to an expression that contains a 

reference to a variable v. \Vhen an assignment statement is created with e as the 

right-hand side, we add the tuple ( s, e), where s refers to the statement. In gen

eral, the uses relation contains tuples of the form (a, b) where a refers to an 

object that logically contains the object referred to by b. 

To determine if the variable xis referenced in some statement y, it is neces

sary to ask if there exist tuples in uses (y, a1), ( a1, ae), ... , and (aM x) for some 

sequence of at, ... , aN, N > 0. This question is simply a matter of determining if 

(y, x) is in the transitive closure of the relation uses. 

We define "closure(R)" to be the relation that represents the transitive clo

sure of a binary relation R. Given the uses relation and the closure operator, the 

statements that use the variable named "a" can then be found by saying 

range of s is statements 
range of v is variables 
range of u is uses 
range of uclosed is closure(uses) 
retrieve (s.all) where 

u.user = s and u.thing = uclosed.user and 

relation(u.thing) ":I "statements" and 
uclosed.thing = v and v.name = "a" 

The first line of the predicate for this query specifies that a qualifying statement 

s must directly contain some object that is not a statement (i.e., an expression or 
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variable), and that this object r~cursive/y contains a reference to a variable 
named "a". Requiring the statement to directly contain an expression or variable 
is necessary to avoid reporting enclosing statements, something implicitly desired 
in this kind of request. 

3.5 Execution Information 

Tuple references and a transitive closure operator offer substantial assis
tance in managing static program data. We now turn to the problem of manag
ing the data that results from the execution of a program. Our semantic model, 
program threads, includes runtime objects such as the values of variables, activa
tion of procedures, and the rest of the state of the executing program. This 
approach integrates debugging facilities naturally into the programming environ
ment, since the same user and database interfaces used for program construction 
can be used during debugging. 

Although we want to provide the appearance of uniformity between the 
source program and runtime data, we also wish to execute compiled code. We 
therefore use an interface between the database system and the executing pro
gram, called the program monitor, to provide the illusion that runtime data and 
program state are in the database. Figure 3.3 shows how the program monitor 
fits into the system. 

The program monitor in effect provides relations such as 

valueof(variableid, value), 

that the user can access in the same way as relations for static program informa
tion. To the database system, the program monitor appears as a collection of 
relations that are physically separate from the rest of the database. In a distri
buted database system it is possible to perform a join operation across relations 
on different machines. Similarly, the value of a variable can be obtained by 
retrieving the value attribute from the tuple in the valueof relation with the 
desired variable's id. 

Runtime data structures that are more complex than single-valued variables 
(e.g., tables, linked-lists, trees) may have more complex operations defined on 
them. For example, there might be an operation on a tree to find the node that 
has the maximum value for some field. One way to perform such an operation is 
to define a relation for the nodes of the tree, put a tuple in the relation for each 
node, and perform the corresponding query. In addition, if some update is made 
to this relation, it could be possible to reconstruct the runtime data structure 
from the relation. These kinds of manipulations require the use of program
dependent data formatting routines. It is natural for OMEGA to support such 
routines, since the database can store the formatting routines with the definition 
and implementation of the data structure. 
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3.6 Monitoring Execution 

When debugging a program, a user often wishes to monitor execution by 

having actions performed when specified conditions are satisfied. The most com

mon actions are either to suspend execution or to print out the program location 

and values of certain variables. The concept of a breakpoint, as provided in most 

systems, is a condition that is satisfied when a particular instruction is reached 

and can be implemented directly on most machines. 

We call a condition that interests the user an event, and allow the user to 

specify a set of actions that are to be performed whenever the event occurs. 

Unlike most debugging systems (e.g., [Johnson 77], [Katseff 79]), in which events 

are specified in a special debugging language, we allow events to be expressed as 

arbitrary relational qualifications. This form of expression naturally integrates 

debugging requests into the programming environment, while allowing the 

specification of a broader range of requests than most systems. 

Some database systems provide a form of events and associated actions 7 

called triggers [Eswaran 76]. A trigger specifies a set of commands to be per

formed when a particular data-base command is executed, subject to an additional 

boolean expression being satisfied. More generally, a trigger can be thought of as 

a predicate involving the information in the database and a set of database com

mands to execute when the value of the predicates changes from false to true. 

\Ve could specify this construct using the following syntax: 

when event 
do 

actions 
end 

The event clause has the same form as the where clause of a QtJEL retrieve 

statement, the actions are database commands. 

Triggers are difficult to implement efficiently for general events. The detec

tion of debugging events can also be complicated; for instance, consider the event 

that occurs when tw~ variables defined in different procedures have the same 

value. The program monitor can help make detection of events easier. 

In many existing debuggers, the only recognized events are the execution of 

particular statements. Thus, although one can imagine debugging events that 

are expensive to detect, many useful events can be trapped with simple break

points. To allow efficient implementation of more complex events, the database 

system must allow the program monitor to translate events into breakpoints and 

report when they occur. Depending on the hardware and operating system, the 

program monitor may use a variety of techniques for determining when changes 

in the program state (e.g., the value of a variable, the activation of a procedure, 

etc.) should trigger events. 
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The following examples show the power and generality of the OMEGA 

approach of expressing events as n~lational qualifications. First, suppose we wish 

to trap a call to procedure "buggy". To express events that refer to locations in 

the program, we assume the program monitor implements a relation 

callstack(procedure, level) 

that at any time contains a tuple for each procedure that is active. The level 

attribute is the runtime depth of procedure calls; it is highest for the most 

recently called procedure. 

To notify the user when the procedure "buggy" is called we might say 

range of p is callstack 
when p.procedure.name = "buggy" and p.level = max(p.level) 

do 
print p 

end 

Printing a tuple of the callstack relation might consist of displaying the name of 

the procedure, the values of its parameters, and the place from which it was 

called. 

Suppose we are interested in seeing this information when "buggy" is called 

from "cause". We would place additional qualifications on the query as follows: 

range of p is callstack 
range of q is callstack 
when 

do 

p.procedure.name = "buggy" and p.level = max(p.level) and 

q.procedure.name = "cause" and q.level = p.level- 1 

print p 
end 

The last qualification indicates that "cause" called "buggy" directly. If we 

omitted the fourth constraint, the event would be triggered whenever "cause" is 

active and "buggy" is called. Other qualifications may test for particular param

eter values, or other aspects of the program state. 

Finally, suppose we wish to suspend execution of the program when 

"buggy" is called with parameter n equal to 0. To stop execution, we "update" 

a relation called program-state, which contains a single tuple of attributes of the 

executing program. For the purposes of this example, we are interested in the 

status attribute, which may have a value of RUNNING or SUSPENDED. 



range of s is program-state 
range of p is callstack · 
range of q is parameters 
when 
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p.procedure.name = "buggy" and p.level = max(p.level) and 

q.procedure.name = "buggy" and q.name = "n" and q.value = 0 

do 
replaces (status= SUSPENDED) 

end 

Using triggers in conjunction with access to runtime information provides 

an extremely powerful mechanism for viewing the execution of a program. Con

ventional debuggers provide a limited set of events and conditions that may be 

brought to the attention of the user. Often this means the programmer has the 

poor choice of too little data or too much. Debugging in OMEGA offers a general 

way for the user to select those events and that information that is most useful. 

Moreover, output provided by the debugger can be immediately entered into the 

database. These facilities provide a powerful mechanism for obtaining and exa

mining execution traces. 

The program monitor provides access to data not stored directly in the 

database. In addition, the database system must allow the program monitor to 

indicate that a particular trigger condition is true. This ability is a natural 

extension of the definition of triggers to a distributed environment. 

3.7 Displaying Information 

Displaying program information on a terminal is a matter of translating the 

internal program representation into a human-readable, perhaps pictorial, form. 

Ideally, we would like to be able to define this pictorial representation as just 

another logical view of the database. However, there are problems with both the 

semantics and implementation of this approach. 

Unlike traditional views, some portion of a pictorial view will be displayed 

on a terminal for a period of time during which the programmer wants to be the 

only one who can change the underlying information. The particular information 

to be displayed is determined by three independent factors: 

• the thread of program information that is desired, 

• the pictorial description of that information, and 

• the amount of screen space available 

\Vhat we want is to be able to define the information that is displayed on 

the terminal as "under surveillance" and locked. Since the pictorial view may be 

larger than the entire screen, we also need to be able to perform browsing opera

tions such as scrolling. 
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The portal mechanism proposed in [Stonebraker and Rowe 82] provides the 

semantics we need. A portal defines some portion of a pictorial view that is to be 

displayed, and locks the underlying information in the database. Scrolling is pro

vided by built-in operations to move a portal within a pictorial view. 

The traditional implementation of views is to compute the tuples in the 

view each time the view is accessed. This computation is expensive for pictorial 

views of programs since they ·are accessed frequently but changed only occasion

ally. For example, scrolling first forward and then backward returns the display 

to its original state. 

The caching of views could save substantial computation, particularly if the 

information were kept in main memory rather than on disk. This facility should 

be provided by the database system. Otherwise each application (in our case, 

OMEGA) undoubtedly will have to do its own caching and therefore have to 

worry about consistency issues that the database system is better equipped to 

handle. 

3.8 Name Resolution 

\Vhenever a user enters a name the system must try to determine to what 

object the user is referring. In a compiler, a symbol table provides the means for 

finding an object associated with a particular name in a given context. Context

dependent name resolution is an important aspect of a good program develop

ment system. People tend to build a "mental working set" of objects and make 

frequent references to them, using names that would be ambiguous if the context 

were ignored. 

OMEGA provides the function of a symbol table by using the database sys

tem to manage context information and expressing the resolution of a name in 

terms of a single query. Using the approach of [Rowe 82], the relevant informa

tion is kept in three relations defined as follows: 

symbols (object= ref, name= string, context= ref contexts) 

visible (from= ref contexts, to= ref contexts) 

contexts (priority = integer) 

The first relation, symbols, associates an object with a particular name in a 

given context. The visible relation defines a structure between contexts so that 

names in the context referred to by the from attribute can be resolved in the con

text referred to by the to context. Since this property is reflexive, the 11isible rela

tion always contains tuples of the form (context-reference, context-reference). 

The contexts relation associates an integer with each context that determines the 

precedence of contexts structured by the visible relation. 
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To understand these relations and the way they can be used, we consider 

the example of name resolution in a block-structured language. The basic unit of 

naming in such languages is called a block, within which names must be unique. 

The scope of a block is a collection of blocks that are searched in some order 

when resolving a name. 

Suppose we have the following declarations in a Pascal program: 

procedure A; 
var C : integer; 
procedure B; 

var C: integer; 
end; 

end· 
' 

There is a block associated with each of the procedures A and B. The scope of A 

consists of only A; the scope of B is the set {B, A}. 

For this example, the symbols relation defined above contains four tuples, 

one for each of the procedures and variables in the program. The scope rules of 

Pascal require the visible relation to contain three tuples: one to indicate that 

names in procedure B are visible in procedure B, one to indicate that names in 

procedure A are visible in procedure A, and one to indicate that names in pro

cedure A are visible in procedure B. 

The contexts relation associates the number 2 for the context associated 

with procedure B, and the number 1 for procedure A. This way, names defined 

in procedure B take precedence in that context over names defined in procedure 

A. In particular, in procedure B the name "C" refers to the C defined in B, not 

the C defined in A. 

Given this information, we can find the symbol with name x in block y with 

a single query. This query is rather complicated to express in QUEL; to simplify 

things we separate it into a view definition and subsequent query on the view. 

To define a view of all the symbols named x that are visible from y, we say 

range of s is symbols 
range of v is visible 
range of c is contexts 
define view x-symbols 

(object = s.object, name= s.name, context= s.context) 
where 

s.name = "x" and s.context = v.to and v.from = y 

Now to retrieve the desired symbol, we select the x-symbol associated with the 

highest priority context by saying 



range of s is x-symbols 
retrieve (s.all) where 

s.context = c and 
c.priority = max( c. priority where s.context = c) 

3.9 Version and Configuration Managemen~ 
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Although software changes over time, it is not always the most up-to-date 

copy that is of interest. Organizations often must support older releases while 

developing new ones. A version is a snapshot of a program or part of a program 

at a particular moment of' time. Because of, and despite, greater portability of 

software, it is often necessary to support different but largely identical pieces of 

software for different hardware or application environments. 

A configuration is a specialization of a program or part of a program to 

meet a particular set of constraints. The difference between versions and 

configurations is that versions are ordered in time, with newer ones presumed to 

supercede older ones, whereas all configurations are equally important, and may 

coexist forever. 

At the core of both version and configuration management are two require

ments that differ from traditional database applications. The first is that there 

must be several valid and consistent instances of data in the database. The 

second is that it must be possible for multiple users to access and update these 

instances of data concurrently. This form of access is not necessarily the normal 

database sense of concurrent access; it is sometimes convenient to allow new 

instances of data to be created that will subsequently be coalesced into a single 

instance. 

When a new version of a program is created, it would be inefficient to 

duplicate the database. Doing so would also make it more difficult to establish 

the relationship between the old and new versions. Software version control sys

tems such as SCCS [Rochkind 75] use a differential file to compactly store pro

gram versions. The original version of the file is kept as are all updates necessary 

to transform the file to the latest (and all intermediate) versions. Hypothetical 

relations [Stonebraker and Keller 80] can be implemented using this technique 

and can be used to support multiple versions of information stored in a database. 

One of the problems with systems like SCCS is that they require the user to 

explicitly state when new versions are created. Hypothetical relations do not 

solve this problem since there is no way to have old versions automatically 

removed. To save space and speed up queries involving past versions, the user 

must explicitly dispose of old versions. Coalescing of versions is also a manual 

process; the exact semantics of a change to an old version is a complex issue 

currently being studied. 
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Configuration management involves automatically building a program out 

of its various pieces according to a· given set of parameters. For example, a com

mon parameter is the target machine or system on which the program is going to 

be run. To minimize the time it takes to build an executable program, only the 

pieces that have changed or depend on pieces that have changed should be 

recompiled. · 

Tools such as make [Feldman 78] provide this service, but require the user 

to specify the program interdependencies. Make uses an auxiliary file that con

tains dependency information; this file must be continually updated by the user 

as the program changes. 

Since make uses a text file as its basic unit of software and files usually con

tain several procedures, it also often recompiles more code than is necessary. By 

using a database, dependency information is not duplicated and the OMEGA 

build process can be done without any user assistance. Moreover, the informa

tion is directly retrievable at whatever granularity is desired. For example, to 

find all the procedures that depend on a procedure named "changed" we could 

say 

range of p is procedures 
range of s is statements 
range of uclosed is closure(uses) 
retrieve (p.all) where 

udosed.user = p and uclosed.thing = s and 
relation(s. value) = "callstmt" and 
s.value.proc.name = "changed" 

Configuration management also requires the ability to determine which pro

gram information belongs to which configurations. A common way to implement 

this feature in conventional programming systems is with conditional compilation 

facilities. Simple control statements are introduced to indicate which statements 

ought to be compiled for different configurations. 

The database provides more complete control over which program elements 

relate to which configurations, since each object potentially could be associated 

with a set of configurations. A relational qualification can then be used to specify 

a particular configuration. For example, suppose we have the following relations: 

configurations (name= string, created =time) 

configof (object =ref, config =ref configurations) 

We can then retrieve all the constants associated with the configuration called 

"VAX" by saying 



range of c is constants 
range of cf is configurations 
range of cfof is configof 
retrieve (c.all) where 

cf.name = '.'VAX" and cfof.config = cf and dof.object = c 
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The most important idea that databases bring to version and con_figuration 

control is that a version or configuration is a view of the program. To get the 

most out of this notion, it is necessary that the difficult problems of view updates 

and consistency be solved. View updates are very difficult in general; however, 

database researchers are working on determining constraints under which updates 

to views can be processed while maintaining the consistency of the database 

[Dayal and Bernstein 82]. 

3.10 Conclusions 

Storing program information in a general purpose database system provides 

a powerful mechanism for manipulating existing software. In designing o:MEGA, 

we have chosen to take advantage of this power by using a relational database 

system to manage all program information. 

To represent and manipulate program information, we have suggested the 

addition of a domain of tuple references and a transitive closure operator to the 

relational model. Both these ideas are similar to other proposed extensions, we 

have focused on them because they are critical for simple and efficient manipula

tion of programs. 

These extensions do not represent a radical change in the relational model 

and are sufficiently general to be of use to a wide variety of applications. For 

example, computer-aided design (CAD) systems for integrated circuits must 

manage both hierarchical and relational data and could use a construct like tuple 

references. 

Data management is a fundamental problem of computing. For general 

purpose database systems to be useful through a wide variety of applications, 

they must provide primitives for data modeling and access. In analyzing the 

database needs of a software management system, we have tried to identify those 

features that will provide the most leverage for manipulating complex data struc

tures. 

Database systems also provide user interfaces for defining and accessing 

information. As we can see from the examples given in this chapter, database 

languages can be as complicated and difficult to understand as programming 

languages, if not more so. Although we have shown how to manage program 

information, the software beast we described in Chapter 1 will continue to roam 

out of control unless this power can be harnessed. In the next chapter we 

describe the basic principles of the OMEGA user interface and show how they 

allow easy and simple access to the database without sacrificing power. 





Chapter 4 

The User Interface 

I'm looking through you, where did you go? 
I thought I knew you, what did I know? 
You don't look different but you have changed. 

I'm looking through you, you're not the same! 

- from the song I'm looking through you by the Beatles 

Seeing is Forgetting the Name of the Thing One Sees 

- title of a book by Robert Irwin 

4.1 Introduction 
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To simplify the construction and manipulation of soft-ware, programmers 

abstract recurring concepts into reusable parts. Current programming languages 

provide built-in parts, (e.g., statements, variables, data types, modules) and 

mechanisms for creating new constructs (e.g., by writing a procedure, declaring a 

variable, defining an abstract data type, or instantiating a module). These 

mechanisms allow programs to be modified easily, since a change to the definition 

of a part affects all its uses. 

Due to the independent evolution of program structures and their different 

requirements for parsing in conventional programming systems, each has its own 

way (syntax and visual representation) for programmers to specify abstractions in 

terms of simpler elements. For example, in some languages, a program may 

define a new kind of integer that can be used just as easily (with overloaded 

operators), efficiently (with inline expansion of procedures), and cleanly (with 

implementation details hidden) as the native integer type. However, in most 

languages, it is not possible to define a new kind of for loop. 

In Chapter 3 we showed how to represent static and dynamic program 

information in a relational database, thus providing powerful operations for view

ing and manipulating software. In this chapter we describe the way the user 

interacts with Orvt:EGA to create, view, and modify abstractions. 

Using the concept of "what you see is what you get" that has been applied 

in many applications, we let users define visual representations of their programs' 

objects and structure. Thus, they can directly manipulate objects and immedi

~tPlv observe the results of those manipulations. 
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We call this approach visual abstraction, since it provides a uniform 

abstraction mechanism based on pictorial and logical views of programs. This 

approach is in contrast to conventional software development, where a descrip

tion of the desired computation is written in a language and then subsequently 

compiled. 

The remainder of this chapter presents the details of the design of the 

OMEGA user interface. We first present our goals for the interaction between 

programmers and OMEGA, then describe the mechanics of this interaction, and 

finally discuss the detection and correction of semantic errors. 

4.2 Goals 

We want OMEGA to help programmers produce correct software, not just 

prevent them from producing incorrect software. Our approach is to have 

OMEGA use a visual medium and conversational protocol to provide a user inter

face that has the following characteristics: 

• no input syntax 

• multiple output formats 

• interactive semantic analysis 

• multi-threaded program organization 

No input syntax means that the user is not required to cast the program in 

one particular form, as for a compiler. As in a menu-based system such as 

Smalltalk, OMEGA should provide suggestions and ask questions during program 

construction rather than forcing the user to remember and type long strings of 

symbols that must obey some rigid structure. 

Support for multiple output formats means that the user may have pro

gram structures displayed in a variety of ways, depending on the aspect of the 

program that is of interest at the moment. Programming systems typically use a 

language as both the input specification and the displayed form of the program. 

As a result, compromises must be made between what can be parsed and what 

information should be displayed. In OMEGA, we want to use graphical output 

and icons to convey the most information in an easily assimilated way. At the 

minimum, output formats must support the multiple ways of building programs, 

so that the user can work without mentally switching between points of view. 

Interactive semantic analysis means that a program is examined as it is 

being built. Just as oral communication is more effective than written communi

cation because the speaker can adjust to the response of the listener, the system 

should provide feedback to the programmer as the program is built. Errors due 

to inconsistency or ambiguity should be resolved immediately. In addition, by 

displaying the structure of the program as it is being built, it may help the pro

grammer see higher-level problems that the programming system cannot detect. 
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. Multi-threaded program organization means that the programmer can 

manipulate the various threads accessible from the database within a single inter

face. Conventional programming systems provide only one view of a program. 

The programmer, however, may wish to see the program in differen,t ways when 

it is being built, modified, or debugged. For example, a gro~p of statements 

might be edited as a unit because they appear in the same procedure, because 

they all reference the same variable, or because they will be consecutively exe

cuted. 

4.3 Mechanics of Interaction 

The key to lifting the burden of syntax from a programming environment is 

to stop using text as the medium of program construction. We have already 

argued that text is a poor representation of program information for data mani

pulation reasons; we argue here that it is also inadequate as the sole interface 

between programmer and system. 

Text hampers human understanding because it is not unique visually; "free 

format" languages allow tokens to be placed in many different positions. Text is 

also not a good representation for editing. Logically one wishes to operate on 

program structures (e.g., statements, variables, types, etc.); using a text editor 

one must manipulate some combination of lines, words and characters. 

OMEGA resolves the different needs for program representation by allm~.:ing 

the program to be entered, displayed, edited, and analyzed in different formats. 

This flexibility is provided by 

• separating the pictorial representation of an object from the object 

itself, 

• pointing rather than typing to identify objects, and 

• using multiple windows to allow pieces of programs to be constructed 

and viewed independently. 

We now examine each of these ideas individually. 

4.3.1 One Picture is Worth a Thousand Keywords 

Most programming environments do not distinguish between an object and 

the pictorial representation of that object. In OMEGA, program structures are 

displayed consistently as pictographs. A pictograph is a view of an object 

displayed on the screen. Pictographs may be arbitrarily assigned to objects; 

different pictographs for the same object may be selected when different aspects 

of the object are to be emphasized. 
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A pictograph consists of letters or graphical images arranged in a two

dimensional area. Ideally, the display device would provide high-resolution and 

allow color, intensity, and non-character graphics to be used. The principles of 

pictographs also apply to lower resolution, black and white, or character-only 

displays, but existing 24 by 80 character CRTs probably hold too little informa

tion for the ideas presented here to be used on any significant scale. 

A pictograph is the visual object that a programmer sees and manipulates. 

Shapes and spatial relationships help convey structural information. An impor

tant feature of a pictograph is that parts of it can be used to represent slots into 

which parameters are placed. 

Figure 4.1 shows an example pictograph for a table search. The table 

search is a two-exit control structure since the desired element may or may not 

be in the table. The slots in the pictograph show places where parameters may 

be inserted for the table to be searched (Table), the key for the desired entry 

(Key), and the variable to point to the object desired (Element}. Note that Ele

ment has a default value; use of the pictograph defines an object if no other one 

is substituted. 

Table Search 
Table 

Key 

Found 

r·-·-·-·-·-·-·-, 
i i 
i Element i 
i i 
L-·-·-·-·-·-·-·~ 

Fig. ·L 1: Pictograph fM tab!t• searrh aL;-;t raction. 
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Figure 4.2 shows ap.other pi~tograph for the same control structure. This 

pictograph shows more details of the implementation and is in the traditional 

text form. This lower-level view of the control structure reveals aspects that are 

hidden by the higher-level view. In Figure 4.1, the parameters to the pictograph 

are represented by boxes; in Figure 4.2, by italicized words. 

label NotFound, Found 
var element: subscript of Table 
if empty( Table) then goto NotFound 
element := first( Table) · 

loop 
if element.key = Key then goto Found 

if element= last( Table) then goto NotFound 

element:= next( Table, element) 
endloop 

Fig. 4.2: Implementation view of a table search. 

An important collection of pictographs are those representing objects in the 

program. These pictographs may appear in the program structure, but also 

appear in a glossary. A glossary is simply a list of pictographs and their mean

ings. Figure 4.3 shows a glossary that might exist in a program using the table 

search of Figure 4.2. 

Employees array of EmployeeRecord, 
table of all employees 

InputName EmployeeName, name of 
emJ>lovee just read 

CurrentEmployee Employeelndex, points to 
the record of the current 
employee 

Figure 4.3. A sample glossary 

4.3.2 It Is Polite To Point 

Our alternative to entering text is to display relevant pictographs on the 

screen and have the user point at, pick up, and put down the corresponding 

objects using a pointing device (e.g., a mouse, light pen, finger, etc.). "Picking 

up" and "putting down" generally mean pointing at something and pressing a 

key or button. 
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The act of picking up an object and putting it down someplace may have a 

different effect depending on the objects and the parts of the pictograph selected. 

Picking up the EmployeeRecord pictograph in the glossary in Figure 4.3 and 

pressing the "what is this?" button would cause a description of the type 

EmployeeRecord to be displayed. Picking up the Employees pictograph and put

ting it down in the Table box of Figure 4.1 makes Employees the actual parame

ter of the TableSearch pictograph. 

To use the TableSearch control structure in the program, we first pick up a 

copy of it by moving the mouse to the pictograph and pressing the pick-up but

ton. We place it at the desired point in the statement list we are working on by 

moving the mouse just below the statement we wish it to follow and pressing the 

put-down button. This action causes the entry line of the pictograph to be con

nected to the previous statement. Figures 4.4( a) and 4.4(b) show how the list of 

statements appears before and after the insertion of the TableSearch. 

The parameters of TableSearch are filled in by picking up the objects and 

putting them down in the boxes. The two possible exits are now sites for addi

tional statements to be connected. Figure 4.4( c) shows the statements after the 

TableSearch has been filled. 

4.3.3 What Is In A Name? 

Identifiers in programs serve two functions: they provide a visual tag that 

the reader uses to associate together different instances of the same object, and 

they provide a mnemonic description of some properties of the object. In tradi

tional systems, these two purposes run against each other. Shorter, more distinct 

identifiers are easier to resolve visually, yet longer identifiers that often may be 

similar are more descriptive. In OMEGA, these two functions are separated. 

Pictographs may be assigned to objects arbitrarily to improve the visual represen

tation of the program; properties of the object are instantly accessible (and may 

be displayed on part of the screen as the glossary) from the database. 

The ability to name by pointing adds significant power to the programming 

environment. For instance, it is not necessary for displayed pictographs to be 

unique. If it is necessary to disambiguate a name, the user simply points to the 

intended pictograph in the glossary (or somewhere else on the screen). Since the 

system always references objects and merely displays pictographs for the conveni

ence of the user, the same pictograph may be used in different parts of the pro

gram without causing confusion about what object they refer to. 

In conventional programming systems, the case often arises that the best 

name for an instance of a data structure is the name of the type of the data 

structure. This conflict must usually be resolved by adding a prefix or suffix to 

one or the other of the names. A similar problem occurs here; when pointing to a 

pictograph, it may be meaningful to pick up either the actual object or a new 

instance of the object. Such problems are easily avoided by allowing several 

pick-up keys. For example, after pointing to a variable, the user might choose to 

pick up the variable itself, the variable's type or v:llllf•_ or even a new variable of 



Read idt>n tifier id from input 

Fig. -t..t( a): Statements and point device before insertion. 

Read identifier id from input 

Table Search 
Table 

Element 

Fig. -t.-t( h): .\fter insPrt ion. 
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Read identifiPr id from invut 

Table Search 
Table 

Employees 

Key Element 

lnputName CurrenlEmp 

if s.class = 1\.EY\VORD then Error("undeclared identifier". id) 

Fig. 4.4( c): After filling parameters. 
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the same type as that variable. 

The use of multiple pick-up keys does not require a pointing device with 

many buttons, in fact the pointing device does not have to have any buttons at 

all. As the programmer's right hand controls the pointing device, the left hand 

stays on the keyboard and uses keys within reach as buttons. Unlike Smalltalk, 

in which menus pop-up in the middle of the active portion of the screen, or 

Cedar, in which the pointing device must be moved to a menu elsewhere on the 

screen, this approach allows commands that are used frequently (e.g., "zoom in", 

"add", "delete") to be entered with a single keystroke without repositioning the 

pointing device. 

4.3.4 Rome Was Not Built In A Day 

One of the advantages text-oriented interfaces have had in the past is the 

support of partially-formed programs. Since no examination of the program 

occurs until the user requests it, it is easy to leave loose ends to be fixed up later. 

Tree-oriented systems often have restrictions, for example, that nodes must be 

added top-down. Moreover, the transformations possible on text are limited only 

by the power of the text editor and the imagination of the user. Structure

oriented editors often make some transformations difficult; for example, it may 

not be possible to change one kind of a node to another without first deleting and 

then recreating the node's children. 

There are some transformations that can be accomplished only with text

oriented systems. For example, moving delimiters to make what used to be a 

string or comment into program statements requires parsing. "Commenting out" 

code is a meaningful and straightforward transformation in OMEGA, however, 

and it is not necessary to resort to text tricks to accomplish it. 

Programs are not represented linearly on the screen in OMEGA. It is possi

ble to build several program fragments independently in different windows and 

connect them together by picking up and moving around pictographs. For 

instance, in the previous section, it would have been equally possible to assign the 

parameters to the TableSearch construct before inserting it into the program as a 

statement. 

One freedom a pointing interface does not allow is that of referring to an 

object that is not yet defined. This restriction is not so bad since the parameters 

of an operation can be defined without defining its implementation. For example, 

one cannot create a call to procedure I before creating the procedure, but one can 

create I and refer to it before specifying its body. Eventually, the program will 

reach a state in which all necessary objects and attributes have been specified, 

and then be ready to run. 
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4.3.5 Screen Management 

During an OMEGA session the screen is composed of a collection of win

dows that belong to one of the following classes: 

• catalog 

• glossary 

• program 

• response 

A catalog window displays a subset of the available operations that are 

defined, including objects, control structures, operations, etc. A program window 

displays program fragments. These fragments can be either c~mplete or partially 

assembled programs. A glossary window displays information about pictographs 

displayed in other windows on the screen. A response window displays output 

from some command or program, such as an error message. Figure ·1.5 shows a 

sample screen. 

Catalog windows are the primary means of searching for information in the 

database. Standard queries allow users to locate previously defined operations, 

objects, and program fragments that they can use. Things in the catalog may be 

displayed in different ways. For example, the lower right window shows opera

tions on booleans; the middle right window shows operations used to read from a 

file. 

Glossary windows are created in conjunction with program windows. The 

glossary is the place where the two functions of traditional identifiers, tags and 

descriptions, are brought together. It displays the pictograph for objects and 

descriptions of what the objects are. Normally, the glossary associated with a 

program window contains entries for each object displayed in the program win

dow. Of course, it is possible to have some of the well-known entries omitted. 

The window in the upper left portion of the screen shows a program frag

ment under construction. As the programmer creates, fills, and moves around 

objects a number of windows need to be created, enlarged, and perhaps dis

carded. ·with this kind of interaction we cannot expect to use either the user

controlled window allocation style of Smalltalk or the traditional "virtual termi

nal" approach. 

Both these strategies rely on a more static kind of window, one that is used 

at a particular size for a relatively large amount of time before being enlarged or 

discarded. For OMEGA, we prefer to have the size, placement, growth, and 

shrinkage of windows determined automatically. An implementation of this facil

ity must take into account 

• the importance of a window (a window may be important because it was 

recently touched or because it contains the time of day), 



procedure readdata 

initialize D 
while not fulL D do 

D tmp := new 

! set contents of tmp here l 

end while 

glossary 

D aggregate 

D file of text 

tmp element of D 
E boolean 

catalog 

read from file 

sort I I I I I I I I 

sort ~ 

write to file 

fill data. structure 

read from file 

eof D boolean 

eoln D boolean 

read Orrom D 
readln D 
reset D 

boolean operations 

B and E E 

E or E E 

not E : E 

Fig. 4.5: A sample OMEGA screen. 
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• the mm1mum size of a window (it is better to not display something 

than to display it too small to recognize), and 

• the relationships between windows, so that related windows are placed 

together. 

The last factor in the list above, inter-window relationships, is partially 

handled in Smalltalk through the window pane mechanism. This mechanism pro

vides small windows that display different menus depending on the information 

displayed in a larger, primary window. This use of menus is particularly useful 

when traversing a hierarchy, since the menus show each level of objects. How

ever, this facility cannot be applied in general in Small talk (one cannot define 

dependencies between windows), and the placement of related windows is done ad 

hoc. 

4.4 Abstractions 

Thus far we have relied on the reader's intuition for an understanding of 

what will happen when pictographs are put together. In this section, we describe 

more details of the abstractions that pictographs represent. 

\Ve use the term abstraction to refer to the general class of things that pic

tographs represent. An abstraction may be a program object such as a variable, 

type, control structure, or operation; it may be a program constructor such as a 

variable declarator, procedure template, or type former; or it may be a program 

manipulation command such as a query, configuration definition, or directive. 

Abstractions are defined using other abstractions. OMEGA provides 

abstractions that are used to create program objects; which particular abstrac

tions are available depends on the underlying programming semantics to be sup

ported. An operation that places or instantiates an abstraction causes some 

semantic changes to the program database. For example, instantiating a variable 

abstraction causes entries to be made in the database to indicate that a new vari

able of the specified type has been created. 

An abstraction has three parts: the pictograph that represents it, the 

parameters (and how they appear in the pictograph), and its semantics in terms 

of operations on the database. The pictograph determines what the user will see, 

and what the visual interaction is. The parameters specify what kinds of objects 

can be connected to the abstraction and how that is done using the pictograph. 

Creating a new object that is an instance of an abstraction causes informa

tion to be added to the database. The operations performed are similar to those 

done during syntactic and semantic analysis of conventional programming 

languages. 



4.4.1 Defining and Using Abst_ractions 

Consider the following simple abstraction for creating variables. 

Abstraction: 
Pictograph: 
Parameters: 

Actions: 

declare a variable 
var name : type 
name is a pictograph 
type is a type object 

Create a new variable object 
Set the variable's pictograph to name 

Set the variable's type to type 
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The pictograph in the example is similar to declarations in conventional 

languages. Note that simply by changing the pictograph in t4e declare a variable 

abstraction to be "type name;", declarations could be displayed in a C-like for

mat instead of a Pascal-like one. 

Suppose we wish to define the exponentiation operator. The following 

abstraction would be used: 

Abstraction: 
Pictograph: 

Parameters: 

Database: 

declare a function 
function name (parameters) : type 

body 

name is a pictograph 
parameters is a parameter list object 

type is a type object 
body is a statement list object 

Create a function object 
Set its parameter list to parameters 

Set its return type to type 
Set its body to body 
Define its database semantics to insert a 

call to the function body 

As one might expect, there are also abstractions for statements, parameter 

lists, and other program structures. If we wish to define the exponentiation 

abstraction, we would perform the following steps: 

• Create a new function by pointing at the "declare a function" picto

graph and pushing the "new" button. The pictograph for the definition 

of the new function will be displayed in a newly allocated window. 

• Construct its parameter specifications using the "build a parameter list" 

abstraction. It would presumably contain a real parameter called base 

and an integer parameter called exponent. 
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• Connect the parameter list to the parameters part of the function 

definition. 

• Pick up a reference to the data type "real" pictograph and place it on 

type. 

• Construct the function body in the body slot by creating and connecting 

the necessary declarations and statements. 

• Build a pictograph for exponentiation referencing the base and exponent 

pictographs and place it in the name slot. 

Once the exponentiation function has been defined, we may install it in the 

catalog. This operation would be done using the "create catalog entry" abstrac

tion, which might have parameters such as the pictograph for the function and a 

list of attributes on which to index the function. A subsequent reference to the 

function creates an instance of the function abstraction, which will cause the 

specified database operations to be performed when all of the parameters have 

been bound. 

4.5 Seman tic Error Detection 

As the user manipulates abstractions, updates are made to the database. 

These updates do not necessarily change the resulting program immediately. 

· Any change, such as defining a variable or creating a new statement, modifies the 

database. The program is altered only when the statement or variable is con

nected to the program. Moreover, the program will be changed only when a com

plete and consistent modification has been made. 

Once the abstraction has been completed (i.e., all parameters are specified), 

the updates specified by the abstraction are attempted. This updating takes 

place as a transaction on the database system. Erroneous transactions do not 

complete and improper objects do not appear as part of the program. For exam

ple, a statement may refer to variable objects whose type has not yet been 

specified. The insertion of such a statement would not take effect until the type 

is defined. \Vhen the type gets defined, all references to the variable are checked 

to be sure they are consistent with the type. If they are, the statements are 

added to the program; otherwise, the statements, though in the database, do not 

yet affect the program. 

Each time an object is connected to a parameter, a check is made to see if 

the object meets the parameter's specifications. If it does not, the object is not 

connected and an error message is generated. For example, connecting a variable 

object to the type parameter in "define a function" would result in an error. 

This approach is sort of a "square peg into a round hole" approach: the user can

not bind an object to a parameter if doing so would result in a type violation. 
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An application-level databas.e transaction mechanism is used to manage 

partial updates to the program. Since the completion of one update may trigger 

the initiation of others, it is essential that multiple transactions be allowed at 

once. These transactions are built on top of the standard lower-level transaction 

mechanism provided by the database system, ensuring the reliable and consistent 

storage of the state of the programming environment even if that state describes 

a partial or incorrect program. 

The semantic analysis necessary to determine if a parameter "fits" is 

equivalent to that done in a compiler after names have been resolved to objects. 

Although the user may give an object a name by putting an identifier in its pic

tograph, references to a pictograph lead directly to the associated abstraction. 

This interface eliminates the problem of resolving overloading for procedures 

since the user points at the actual procedure, not the name of a procedure. 

Because semantic error detection is done as the program. is constructed, vio

lations of constraints such as type incompatibilities are reported immediately, not 

after some period of time during which the user has forgotten the context in 

which the error occurred. Many sorts of errors (missing parameters, undefined 

variables) simply cannot occur due to the sequence of operations necessary to 

create the program. 

Global changes that affect many parts of the program can be performed 

reliably because OMEGA can detect incomplete changes. If it is necessary to add 

a parameter to an operation, the system can find and request modification of 

each instance. Of course, it is not required that all instances be fixed immedi

ately. Such temporary inconsistencies or incomplete objects form a task list of 

work to be performed by the user. 

4.6 A Bigger Example 

\Ve have used isolated examples to illustrate the individual features of the 

OMEGA user interface. Now we show how OMEGA could be used in a longer, 

practical context. 'Vv' e consider the problem of constructing a module for manag

ing a queue of processes waiting to run on a processor. 

Figure 4.6(a) shows the screen upon entering OMEGA. The only informa

tion that is present is the catalog of the relations in the database. The first thing 

to do is to find existing modules that manage queues. To do this, we enter and 

execute a query to find all modules whose associated glossary information contain 

the string "queue". To enter this query, we first create a new query by moving 

the cursor to the "queries" entry in the catalog and pressing the "create a new 

one of these" key. 
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catalog_ 
programs 
modules 
quenes 
updates 
templates 

Fig. 4.6(a): Initial screen. 

The resulting screen is shown in Figure 4.6(b ). A prototype query is 

displayed in a new window; it looks much like a query expressed in QL"'EL. The 

glossary window gives a short definition of each of the pieces of a query . 

querv . catalog 

range variable list programs 

retrieve relation modules 

where predicate quenes 
updates 

glossarv templates 

range variable list - bindings for predicate variables 
relation- where objects retrieved from 
predicate- which objects to retrieve 

Fig. 4.6{b ): After creating a new query. 

To build the query we desire, we pick up the "modules" relation from the 

catalog window and place it on the "relation" slot in the window for the query, 

which specifies that we want to see qualifying tuples that are in the "modules" 

relation. To create the range variable list, we move to the slot and press the 

"create a new one of these" key. This action expands the slot in to a prototype 

range variable list, which is a range statement followed by a range variable list. 

The range statement prototype has slots for the name of the range variable 

and for the associated relation. To fill in the name slot, we press the "here comes 

a string" key and type the string "m". The relation slot is filled in by picking up 

the "modules" relation from the catalog window, moving to the slot, and pressing 

the "put down" key. 

The predicate is filled in the same manner. The only difference is that 

when the "create a new one of these" key is pressed with the cursor on the 

"predicate" slot, a window is created that shows the different possibilities from 

which to chose from in constructing a predicate. The state of the screen after 

constructing the query in shown in Figure 4.6{ c). 
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query catalog 

range of m is modules programs 

retrieve modules modules 

where m.giossarylnfo = "*queue*" quenes 
updates 

glossary templates 

m - range variable 
modules - relation 
ulossarvlnfo- field of modules relation 

Fig. 4.6( c): After constructing query. 

With the cursor on the query, we press the "execute'' key and the results of 

the query are shown in a new window. The state of the screen after executing 

the query is shown in Figure 4.6( d). Two modules for managing queues already 

exist, one a queue of processes waiting for disk 1/0 and one a queue of jobs 

spooled to a printer. In addition to the type of queue they manage, these 

modules also differ in the semantics of their operations. For example, the printer 

queue manager may process jobs in the order they are added to the queue 

whereas the disk queue manager may take into account the current position of 

the disk head in choosing the next request to process. 

querv catalog 

range of m is modules programs 

retrieve modules modules 

where m.glossarylnfo = "*queue*" quenes 
updates 

result of query templates 

module DiskQueue; 
module PrinterQueue· 

glossary 

DiskQueue- manager of queue of processes waiting for I/0 

PrinterQueue- print queue manager 
m - range variable 
modules - relation 
glossarvlnfo- field of modules relation 

Fig. 4.6( d): After query is executed. 

Suppose we believe that the printer queue manager would be more 

appropriate as a starting point for the new queue manager we are constructing. 

We therefore move the cursor to "PrinterQueue" and press the "zoom in" key. 

The resulting screen is shown in Figure 4.6( e). 
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module PrinterOueue catalo~ 

procedure add(Process, PrinterQueue); programs 

procedure remove(Process, PrinterQueue); modules 
quenes 
updates 

glossary templates 

PrinterQueue - pointer to record ... 
Process - record ... 

Fig. 4.6(e): After zooming in on "PrinterQueue". 

To use the "PrinterQueue" module as the basis for the new module, we 

create a new configuration of the module called "RunQueue". Creating a 

configuration allows common portions of the module to be shared with the "Prin

terQueue" module, meaning that improvements to one module, such as a bug fix 

or enhancement, can be easily passed on to the other module. Most systems do 

not provide this capability, but instead force the user to either copy the existing 

module or add code to the existing source that conditionally performs either the 

new or old functions. 

Since no reference to configurations is currently on the screen, we must 

zoom in on the "templates" entry in the catalog. This operation will create a 

new window listing all the relations in the database, one of which is 

configurations. • 

After creating a new configuration, we must define the type "RunQueue", 

change occurrences of the type "PrinterQueue" to the type "Run Queue", and 

add any other features not in the printer queue manager. To change type 

occurrences, we construct a global update in a similar manner to the way we first 

constructed a query. Figure 4.6(f) shows the screen after the update has been 

constructed. 

update catalog: 

range of v is variables programs 
replace v (type= RunQueue) modules 
where v .type = PrinterQueue quenes 

updates 
dossarv templates 

v - range variable 
variables - relation 
type - field of variables relation 
RunQueue- pointer to record ... 
PrinterOueue - pointer to record ... 

Fig. 4.6(f): After constructing update. 
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In addition to this update fo:r: the types of variables, it would also be neces

sary to perform similar updates for functions, parameters, and record fields. All 

of these updates could also have been defined as a single, higher-level operation 

that changes all references to a type to refer to a second type. In this case, the 

change would require simply selecting and executing this operation. 

Figure 4.6(g) shows the "RunQueue" module after the updates have been 

performed. 

module RunOueue catalol!: 

procedure add(Process, RunQueue); programs 

procedure remove(Process, RunQueue); modules 
quencs 
updates 

!!:lossarv templates 

RunQueue- pointer to record ... 
Process - record ... 

Fig. 4.6(g): Newly constructed "RunQueue" module. 

This construction shows an example of how the use of pointing, templates 

for abstractions, and interactions with database fit together. Since it is not taken 

from usage o( a real interface, it is unnecessarily verbose. In practice, popular 

"short cuts" are likely to be used to specify frequently occurring combinations of 

commands. Nonetheless, this example shows the style of interaction that the 

OMEGA user interface provides. 

4.7 Conclusions 

Graphical input and output provide efficient and effective ways of express

ing and representing the relationships between different program elements. 

Rather than expressing a program in terms of a language, programmers using 

OMEGA define and manipulate abstractions visually. Consequently, instead of 

having to parse lines of text and resolve identifiers to objects, causing conflicts 

that leads to multiple languages, O:MEGA can provide a uniform model of 

abstraction and a simple structural interface. 

Using a database, the same program may be manipulated according to 

several different viewpoints, including a traditional hierarchy. Recent deyelop

ments in programming languages have favored modular structures, with restric

tions on which objects and operations are available to which moduies. O~GA 

not only makes such constraints easy to describe and check, but allows auditing 

of usage in a natural way. 



56 

Languages such as Ada requi~e the programmer to describe modules twice -

once from the perspective of the implementor, and once from the perspective of a 

user. OMEGA allows these two perspectives to be defined as views on a single 

description, along with indications of what parts of the implementation should be 

visible to users. This facility can be generalized to allow different classes of users 

to have different levels of access to the implementation of a module. 

Because the partially constructed program is stored in the program data

base, it is possible to immediately check for compile-time errors. Moreover, 

because the program is built rather than typed, a variety of common errors can

not be made. 

The user interface described in this chapter together with the database 

organization described in chapter 3 forms the design of OMEGA. Although we 

have tried to fit the user interface and database together, we also have strived to 

focus each on its respective task so that implement~tion issu~s can be isolated to 

a particular area and solved using the general principles of the individual fields. 

In the next chapter, we discuss what we have done in the way of implementation 

to experiment with these ideas. 



Chapter 5 

Experimental Implementation 

Dorothy: Gee Toto, I don't think we're in Kansas anymore. 

\Vizard: Ignore that man behind the curtain! 

-from the movie The ~Vizard of Oz 

5.1 Introduction 
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Often an implementation is more interesting than a design because it is a 

concrete representation of some ideas. People frequently confuse the two, not 

distinguishing between solutions to problems and the realization of these solu

tions. The best example of this kind of confusion is in programming languages, 

,.,.·here a compiler is often used as an operational definition of the language. 

It is important not to confuse the ideas presented in previous chapters with 

the implementation that we describe in this chapter. The number of ideas in the 

design of OMEGA make a complete implementation too much effort for this 

dissertation, not to mention the effort involved in preparing and polishing a sys

tem for use in a production environment. 

Since we cannot build a production system, we certainly cannot evaluate 

the effect of OMEGA on programmer productivity. As we mentioned in 

Chapter 2, this would be a difficult task even with a working version of OMEGA, 

since just measuring programmer productivity is a hard problem. 

The purpose of doing some of the implementation, then, was to learn more 

about our ideas. \Ve particularly wanted to see if using a relational database sys

tem was feasible since the use of such a system is one of the more unusual ideas 

in the design. Some of the specific problems that had to be solved to do this 

include specifying a relational schema for a particular set of programming 

language constructs and interfacing to the database in terms of this schema. 

We also wanted to experiment with our pointing-driven user interface and 

the window allocation ideas that are needed to support it. Problems in this part 

of the implementation include representing and displaying pictographs, allocating 

windows, and interfacing to the database system through the display so the user 

can ask queries on the program information. 
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In the remainder of this chapter we present an overview of the approach to 

implementing som·e of these ideas· and then discuss the individual implementa

tions in detail. We also briefly discuss the performance of our implementations 

and what it means about the design. 

5.2 Approach 

To experiment with our ideas, we needed an apparatus with which we could 

quickly build parts of OMEGA. Since our design is targeted for future hardware 

and database technologies, it was necessary to use components that do not pro

vide the full power and speed we eventually expect to have available. In particu

lar, we did not have access to a commercial database system or a bit-mapped 

graphics workstation. 

The underlying environment that we could use to develop OMEGA was 

UNIX running on a VAX-11/780t. One of the main points of'Chapter 3 was that 

OMEGA should use a general-purpose database system; we therefore chose the 

relational system INGRES because it was convenient (it runs on UNIX), familiar 

(we had used it before), and "supported" in the sense that the database research 

group at Berkeley was (and still is) using and doing research on INGRES. Talk

ing to members of this group helped us both to understand how INGRES has 

evolved and what problems in database systems are currently being solved. 

Once we had decided on the database system, we had to decide what to put 

in the database. The intent of OMEGA is to manage large software systems, we ~ 

therefore wanted to be able to use OMEGA on a relatively large system. This 

desire meant we needed a way to quickly enter some existing software into the 

database, whirh in turn implied that we had to support the structure and seman

tics of some existing programming language even though we eventually wanted to 

provide the general form of abstraction discussed in Chapter 4. 

The requirement of an existing body of software eliminated our first choice 

for a language to support, namely Ada. We also decided against the popular 

languages C and Pascal. The textual macro facilities available in C make it 

difficult to store the program in the database as the programmer really thinks of 

it. 

We chose the programming language Model [lVIorris 80] over Pascal because 

it supports more recent programming concepts surh as abstract data types and 

generic modules. We felt it was important to understand how to handle these 

facilities since they are present in Ada and other, newer languages. Also, the 

DEMOS operating system [Baskett, Howard, and Montague 7i], which is being 

used as the basis for some operating systems research at Berkeley, is written in 

Model and provides an interesting testbed of evolving software. 

tV AX is a trademark of Digital Equipment Corporation. 
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Given these tools, our implementation consists of parse, a program that 

takes Model text and enters it into. the INGRES database, and peruse, a program 

that lets the user view, query, and modify the software that is stored in the data

base. Figure 5.1 shows how the various pieces of our implementation fit together. 

5.3 Storing Program Information in an INGRES Database 

The first thing we had to do was decide how to store the program informa

tion in the database. This decision involved designing the schema by defining the 

initial set of relations and views. Although we eventually wanted to be able to 

extend the kind of information we store in the database, for simplicity we 

assumed a static schema. 

The schema has undergone several iterations, and is certainly not yet ideal. 

We used the following ideas to guide our design: 

• Represent classes of objects by relations, individual objects by tuples. 

• Use traditional programming language structures (variables, if

statements, etc.) as the object classes. 

• Store a unique identification (lJ1D), represented as a.n integer, in the first 

field of each tuple and use this number to refer to the tuple from other 

tuples. Use the number 0 to indicate a nil, or unassigned, reference. 

• Use a (relation UID, tuple UID) pair to refer t{) an object whose 

representation can vary, e.g., an expression can be a function call, sub

script operator, constant, etc. 

• Represent information once; use views to represent different kinds of 

references to objects, e.g., variable usage is a view of the variables rela

tion. 

The resulting schema consists of 58 relations and 15 views for storing pro

gram information. A little less than half of the relations ( 26) are for traditional 

symbol table information, almost a third ( 19) for representing expressions, and 

the remainder split between representing statements (10), the string table (2), and 

a relation associating objects with the objects they contain (referred to as the 

uses relation in Chapter 3). The tables in Figures 5.2( a) and 5.2(b) list all the 

relations and their fields. 

In addition to these relations, there are four auxiliary relations: uniqueid, 

abstraction, bodyof, and viewof. The uniqueid relation contains a single tuple 

with a single integer field that is the last UID to be assigned to some tuple. To 

allocate a lJlD this field is conceptually retrieved, incremented, and stored back 

in the database. In practice, it is too expensive to allocate UIDs one at a time 

like this, so a group of n UIDs are allocated at once by adding n to the field of 

the uniqueid tuple. 
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The abstraction relation associates each relation name with a UID to allow 

references to relations to be stored ·as integers rather than character strings. The 

bodyof relation associates implementation views with definition views, and is used 

by peruse to implement the "zoom in" command. The riewof relation associates 

the predefined views with their underlying relations, and is used when directly 

accessing information from the database. 

6.3.1 Predefined Views 

The predefined views of the database represent definitions or uses of pro

gram objects. The use of views allows objects to be displayed differently depend

ing on their context. For example, when displaying a variable as part of an 

expression, only the variable's pictograph is printed, but when displaying a 

declaration of a variable, its type is printed as well. Of course, it is possible in 

OMEGA to have the type displayed in expressions as well, but this is not the 

normal way people wish to see expressions displayed. Therefore, there is a view, 

called var-use, that is referred to by expression tuples. This view is defined by 

the following QUEL statements: 

range of v is variables 
define view var-use (id = v.id, pictographs = v.pictographs) 

There are also views for uses of procedures, functions, parameters, constants, 

spaces, and trpe names. 

The definitions of an object, such as a module, are also represented as a 

view of the corresponding implementation object. For example, there is a view of 

procedures called proc-spec defined as follows: 

range of p is procedures 
define view proc-use ( 

id = p.id, pictographs = p.pictographs, 
proc-class = p.proc-class, paramlists = p.paramlists 

Using views keeps the information on a procedure in a single place, but allows 

either the definitions or implementation of the procedure to be displayed. 

5.3.2 Representation of Pictographs 

The pictograph associated with each relation and view specifies how a tuple 

belonging to the relation or view should be printed. A pictograph is represented 

by a format string containing meta-characters to indicate where and how the 

fields of a tuple should be displayed. For example, the pictograph for the var-use 

VleW lS 
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%2r 

The "%" character indicates that the value of a field is to be displayed at the 

current output location, and the digit following the ''%" (in this case a "2") indi

cates which field is to be displayed. 

The character following the digit indicates how the field should be 

displayed. For the var-use example, this character is an "r" and means that the 

field is a reference to another tuple that should be retrieved and displayed 

according to the pictograph for its relation. 

The "r" also indicates that the name of the relation to which the field 

refers is the same as the name of the field. For the example, the pictograph 

"%2r" for a var-use tuple therefore specifies that the second field is a reference to 

a tuple in the pictographs relation, because the name of the second field is "picto

graphs". 

To indicate that a field to be displayed is a reference to some relation that 

is designated by an adjacent field in the tuple, the character "R" is used. For 

example, the variables relation, which is defined as 

variables(id = integer, pictographs = i4, type-rei= i4, type-id = i4), 

has as its pictograph the following: 

%2r: %3R 

The "3R" means the third field of the relation contains the UID for a relation, 

and the next (fourth) field contains the UID of a tuple in the relation. 

Other characters to indicate how to display a field are "s" "d" "o" "c" 
' ' ' ' 

and "f" for character string, decimal integer, octal integer, single character, and 

real number. In addition, the character """ means to use the pictograph associ

ated with the current tuple in the pictof relation, rather than the pictograph for 

the tuple's relation. This facility is used for displaying procedure and function 

calls, since calls to different procedures are displayed differently. It avoids the 

need for having a separate view defined for each individual procedure and func

tion. 

5.3.3 Semantic Constraints 

In addition to the relations and views describing the structure of programs, 

we intended to specify constraints on the data to ensure that the program infor

mation was meaningful. For example, the type-rei and type-id fields of the vari

ables relation together refer to a tuple that contains the type of the variable. 

The type-rei field contains the UID of some type relation (e.g., typenames, arrays, 

or records). 
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To ensure that the type-rei field actually refers to a type relation and not 

something else (e.g., forstmts), we would like to use database integrity con

straints. If we had a relation called "types" that contained references to each 

relation that is legitimate as a type, then we would specify an integrity constraint 

as follows: 

range of t is types 
range of v is variables 
define integrity on v is v.type-rel = t.legit-type-rel 

INGRES does not currently support this kind of integrity constraint. We 

therefore do not currently have any provisions within the database for ensuring 

the integrity of relation references, or enforcing any other constraints. 

Parse is assumed to generate only correct program information into the 

database. We now turn to the problem of generating this information from 

~lodel text. 

5.4 Parsing Model 

The parsing necessary to compute the database tuples from text is the same 

as that which is performed during the first phase of a compiler. Ideally, we 

would have taken the first phase of the existing Model compiler and used it as 

the basis for parse. We spent some time trying this approach, since it would 

have guaranteed that our parser· would recognize exactly the same language as 

the compiler, but we decided against pursuing it further for the following reasons: 

1. The existing compiler was (and still is) quite slow. Since it is itself writ

ten in Model, we found it took an undesirably long time to test 

modifications. 

2. Although the control structure of the compiler corresponded to the basic 

phases (parsing, name resolution, semantic checking, and code genera

tion), the data structures contained a mix of information from all 

phases. They also did not match our schema very closely. 

3. The compiler uses ad-hoc recursive descent parsing, making it diffic-ult 

to build our own data structures. 

Undoubtedly, (1) and (2} were the main reasons our attempt to use the 

existing compiler was not successful; (3) convinced us to start over using the 

parser generating program YACC [Johnson 78]. Using YACC, we were able to 

quickly construct a parser based on the grammar in the appendix of the Model 

reference manual. 
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5.4.1 Interfacing to INGRES . 

\Ve initially tried writing tuples to the database while parsing, but this 

turned out to be undesirable since our schema was designed to contain references 

to objects, whereas information from parsing yields references to names. For 

example, the usage of a variable named "i" can be recognized during parsing, but 

which object it refers to cannot be determined because Model allows forward 

referencing. 

The situation is more complicated for procedure and function calls, since 

Model allows (and OMEGA will also) the same name to be used for different pro

cedures or functions so long as the types of the parameters differ. For example, 

"+" used on two integers is a different function from "+" when used on two real 

numbers. 

As we showed in Chapter 4, our visual interface to the program. database 

largely eliminates the process of resolving names to objects present in a tradi

tional text interface. This level of interface, combined with our experience with 

INGRES performance, made it more desirable to have parse do semantic analysis 

than to perform analysis directly on the information in the database. We there

fore changed the parsing phase to build data structures for the program informa

tion in memory, and then added a phase for analysis of these structures and a 

final phase to dump the information into the database. 

The analysis phase performs both name resolution and some semantic 

checking, though we were not concerned with catching all semantic errors since' 

we planned to enter only correct programs into the database. Semantic checking 

was helpful, however, in detecting bugs in parse as it occasionally reported errors 

for correct programs. 

5.4.2 Name Resolution 

Since in Model, any object can be referenced before it is defined, we con

struct special objects during parsing that are references to identifiers. From the 

syntactic context we know whether the reference is to a procedure, function, 

type, or else one of parameter, variable, and constant. Definitions of objects are 

also entered into a traditional symbol table. 

Model allows blocks to be nested and has scope rules similar to Pascal. 

Since name resolution cannot be done during parsing, we cannot discard symbols 

at the end of the block in which they are defined. Resolving names after com

pleting parsing also means that the symbol table lookup routine cannot assume

that symbols are ordered by nesting depth. 

To handle this forward referencing, each symbol in the symbol table is asso

ciated with a particular block and the block is used along with the identifier as a 

key for insertion and lookup. Since blocks are represented as pointers and 

identifiers are represented as pointers into a string table, we can use these two 

addresses as a key and therefore make the cost of hashing and comparing keys 



67 

very cheap. 

After parsing, we traverse all the objects in the program and attempt to 

resolve any of the references. The basic algorithm to resolve a reference could be 

written .in Pascal as follows: 

procedure resolve(name : Identifier; var sym : Symbol); 

var b : Block; 
done : boolean; 
s: Symbol; 

begin 
done := false; 
b := curblock; 
repeat 

s := lookup(name, b); 
if s < > nil then begin 

done := true; 
sym := s; 

end else begin 
b := outerblock(b); 
if b = nil then begin 

done := true; 
writeName(errorFile, name); 
writeln( error File, ' undefined'); 

end 
end 

until done; 
end 

Parse also uses two variations of this algorithm, one for procedures or func

t:ons and one for types. Procedure and function names can be used more than 

once within the same scope if each definition has a different set of parameter 

types. The effect of this facility is that for each block it is necessary to iterate 

over all the procedures and functions in the block with the desired name and 

check to see if their parameters have matching types. It is not sufficient to stop 

when a match is found, since more than one procedure or function might satisfy 

the conditions and this should cause an error message to be printed. 

Some procedures and functions (e.g., "='')are built-in but can be overriden 

by a user definition. If two functions match a call but one is b'Iilt-in, then this is 

not an error and the call should be resolved to the user-defined function. · 

The other variation of the resolution algorithm is for types. In Model, 

abstract types (called spaces) can be parameterized by one or more types. Each 

distinct use of a space causes a new instance of the body of the space to be 

created with the actual types substituted for the formal type parameters. The 

approach to resolving a reference to a space is similar to that for a procedure or 

function call, except that there are neither conflicts nor builtin spaces, and if a 
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reference is not resolved then a new instance of the space should be created. 

5.4.3 Current Status 

The implementation of parse is complete. Though it has not been 
rigorously tested or heavily used, it has successfully parsed, performed type 
analysis, and stored both the DEMOS kernel and the Model compiler (over 15,000 

lines) into an INGRES database. 

Parse is approximately 10,000 lines of C code, and took a total of about 4 

months full-time effort to develop. We chose C to make interfacing to YACC 
easy; we would have preferred a language that provides for more semantic check

ing at compile time. 

5.5 Viewing Programs from the Database 

Although it has been necessary at times, looking at programs as tuples in 
INGRES is quite painful, being similar in many respects to looking at a hex 
memory dump. The purpose of implementing peruse was as much to see that the 
information was really in the database as to experiment with the user interface 
ideas presented in Chapter 4. 

Since we did not have the graphics capabilities we wished and since we 
could not hope to implement the entire interface in a short time, we focused our 
implementation efforts on two areas: the interface between peruse and INGRES 
and the management of the screen area. These two areas are related by the con
vention that each program thread (i.e., view of the database) is displayed in a 
different window on the screen. 

A query, then, causes the information to be retrieved from the database and 
displayed into a new window. In the four subsections that make up the 
remainder of this section we discuss how peruse interfaces to the database, how 
information is displayed on the screen, how commands are entered and processed, 
and what the current status of the implementation is. 

5.5.1 Database Interface 

The first version of peruse had static knowledge of the kinds of objects and 

corresponding names of relations in the database, as well as having explicit code 
for displaying objects. This version enabled us to see the information in the 
database displayed as normal program text. However, we quickly ran into the 

following three problems: 

1. It was very expensive to display the body of a procedure. For a 10-line 
procedure it took over 20 seconds of CPU time (about 2 minutes elapsed 
time) on our VAX. 
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2. Every time the schema changed, a substantial portion of peruse had to 

be changed. 

3. The general concept of a pictograph, as presented m Chapter 4, was 

missing from the implementation. 

In the next version of peruse we therefore looked at improving performance and 

generalizing it, both by removing most schema dependencies and by using picto

graph information stored in the database to drive the display algorithm. 

5.5.1.1 Improving Performance 

The problem with response time was due to retrieving each object with a 

separate query. For example, suppose the user wishes to see the body of a pro

cedure. This object is represented by a single tuple from the implementation 

view of the procedures relation. \Vhen this tuple is displayed, all the different 

objects within the procedures (statements, variables, etc.) have to be retrieved. 

The problem of processing a large number of small queries is a general one. 

Queries have an inherent amount of overhead due to the parsing, access strategy 

selection, and lockir.~~; that is necessary. Our first attempt to solve this problem 

was to retrieve all the objects in a procedure at once rather than through indivi

dual queries. To do this we had to know in what procedure every object was 

defined. \Ve kept this information first as a field in each object and later in the 

contains relation. 

Using the contains relation worked well for very small programs, but was 

too expensive for larger programs, such as the DEMOS kernel. A single query 

involving a join of contains (over 20,000 tuples) with stmtlists (over 1,000 tuples) 

took over 13 seconds of CPU time. 

Keeping the procedure where an object belonged in a field within the object 

was not as expensive, but still required a query for every relation to retrieve all 

the objects in a particular procedure. For example, even if a procedure did not 

have any variables defined in it, a query would be generated on the variables rela

tion. 

As mentioned in Chapter 3, retrieving all information for a given procedure 

is only helpful for one particular, albeit common, view. When some other view is 

desired, such as a collection of statements or declarations that cross procedure 

boundaries, it is not desirable to retrieve all the information associated with all 

the different procedures. 

We therefore went back to the approach of retrieving a tuple at a time and 

tried to reduce the amount of time it took to do an individual retrieval. The 

most frequent queries were of the form 
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range of t is some-relatio_n 
retrieve (t.all) where t.id = some-id 

for a given UID and relation. To minimize the searching necessary to perform 

this query, we advised INGRES to keep a hash table on all relations using their 

id field as the key. 

Knowing the exact form of the query and the appropriate access strategy 

for it, we modified peruse to perform these queries using the INGRES access 

methods directly. This approach avoids the overhead associated with query pro

ces~ing, and in addition, since INGRES runs as a process separate from peruse, 

also avoids the overhead of exchanging messages via Ul\;1X pipes. 

This modification gave the effect of compiled queries, since what we did was 

"hand-compile" a particular class of queries. These queries still ran as separate 

transactions, meaning no pages were buffered across queries .. To simulate tran

sactions, or more precisely buffering across queries, we modified peruse to keep 

relations open rather than closing them at the end of each query. The table 

below shows the performance of peruse zooming in on the body of 5-line program 

using standard queries, hand-compiled queries, and hand-compiled queries with 

buffering. 

Queries # tuples 
#pages CPU time Elapsed time 

read (seconds) (seconds) 

standard 36 281 30.7 40 

compiled 36 156 4.8 13 

buffered 36 93 3.4 7 

Compiling queries had a dramatic effect on performance, reducing CPU 

time by more than a factor of six, while buffering had a more modest effect. This 

effect might be more pronounced for larger programs. These results indicate that 

a production implementation of OMEGA requires a database system that can 

compile queries. Some buffering capability would also help performance. 

5.5.1.2 Generalizing Peruse 

Eliminating dependencies on the database schema in peruse code required a 

general mechanism for retrieving, displaying, and updating information based on 

input commands. We implemented this mechanism by using a dynamic schema 

rather than a static one, and by using the pictograph for an object to display the 

object. 

Using a dynamic schema means keeping the information on how to inter

pret a particular command for a particular class of objects in the database rather 

than having it written into the peruse code. For example, peruse provides a com

mand to "zoom in" on an object. Originally, the semantics of zooming were 

made explicit for particular program objects by having a different routine for 

each class of object (programs, procedures, etc.). The routine for program 
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objects, for example, generated a query to retrieve and display the body of the 

main procedure in the program. 

To generalize zooming in on a particular object we created the oodyof rela

tion with two fields, one that names a definitions view and one that names the 

implementation view. This relation is then used to find the implementation view 

-for the object's class. The pictograph for the implementation view indicates how 

to display the body of the object. 

For example, bodyof contains the tuple 

( var-use, variables). 

If the user asks to zoom in on the usage of a variable, this tuple is used to 

retrieve the tuple in the variables relation with the same UID as the specified 

tuple in the var-use view. Using the pictograph for variables, .the variable's name 

and type are then printed. 

A consequence of accessing the schema dynamically is that most operations 

cause several accesses to the database and therefore are slowed down substan

tially. Since many of these accesses are to the abstraction, relation, attribute, and 

pictographs relations, we read a copy of these relations into memory when start

ing up and access this copy instead of the database. 

5.5.2 Display Management 

\Vhen a view of the database is requested, the information is retrieved and 

transformed into text using pictographs and stored into a picture. During this 

transformation, each object and its location within the picture is recorded in a 

map. Afterward, a rectangular portion of the screen, called a window, is allocated 

and as much of the picture as will fit is displayed in the window. The associated 

picture, map, and window are kept together in a data structure called a scene. 

Figure 5.3 shows an example of a scene. 

Also associated with each scene is a cursor that refers to the current pro

gram object of interest in the associated view. This cursor is not a character cur

sor as in a text editor since the object can be represented by more than one char

acter (or even more than one line) in the picture. The text associated with the 

current object is highlighted on the screen. 

\Vindows are allocated at a static location and have a fixed size; the sophis

ticated allocation scheme discussed in Chapter 4 has not been implemented. The 

screen is divided in half horizontally and vertically to form four partitions that 

are used as windows. This partitioning does not include the top and bottom lines 

of the screen, which are used for status information and error messages respec

tively. When a new window is to be allocated, peruse uses a window that is 

either unallocated or least recently touched. 



B 

~ 

~ ....: 'C 
~ ' .... 

~ ' 
~ ~ 

EJ 
' ' 
' ' .... .,. ··--· -· --··;..... 

~ - ~ 
~ -

~ -~ 

~ 

window 

picture ' 

i 
L_ 
map 

pictographs 

Fig. 5.3: The structure of a scene Jn peruse. 

72 

program 

thread 



73 

5.5.3 Input Commands 

Commands are entered by a single keystroke, and specify an operation on 

the current object in the current scene. The table below shows the commands 

that are recognized by peruse (the notation "tX" indicates the control key is held 

down while pressing the key "x"). 

key command 

tF scroll forward 
tB scroll backward 

tR rotate left 
iG rotate right 
tD redraw 
s select 
s pick up 
w move cursor forward 
b move cursor backward 
e zoom m 
v· show slots 
c create 
f fill in 

The "select" command requests that the scene's cursor be moved to the 

object nearest the input cursor. Ideally, the 'input cursor is controlled by a point

ing device; however, it can also be controlled by cursor movement keys. "Pick 

up" is just like "select" except that the object is pushed on a stack for use with 

future commands. 

An input cursor refers to a particular character location and therefore could 

be ambiguous, e.g., seJ.~cting the "a" in "a := b + c" could refer to either the 

variable named "a" or the entire assignment statement. To allow fine tuning ur
the cursor position, the "move cursor forward" and "move cursor backward" 

commands move the cursor according to the order in which the objects were 

traversed when they were displayed. 

The "zoom in" command finds an object's relation UID in the bodyof rela

tion and uses the UID of the associated relation to display the object. For exam

ple, since the tuple (proc-spec, procedures) is in the bodyof relation, pressing 

"zoom in" when the current object is a proc-spec causes a new window .to be 

allocated and the body of the procedure to be displayed in it. 

The "create" command creates a new object with the same relation as the 

current object. The "show slots" command forces unfilled fields of an object to 

be displayed as "<relation-name>"; they are not normally displayed. The "fill 

in" command can be used to set the value of an unfilled field to either a reference 

to an object that has been picked up, or a literal value (e.g., pictograph or 

integer) entered by the user. 
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5.5.4 Current Status 

Peruse is continually being changed in an attempt to evolve it tov.,·ard the 
interface described in Chapter 4. The first version used a static schema and 
could zoom in on p~:ogram objects only. It also provided a command for finding 
all the uses of an object, causing a set of predetermined queries to be sent to 
INGRES and the results displayed. This facility demonstrated the power of 
using a database system, since providing it required very little additional code in 
peruse. 

The second version of peruse used a dynamic schema and direct access to 
the database to dereference UIDs. It displayed objects using the pictographs 
stored in the database, but it did not allow objects to be created or modified. It 
did provide multiple windows, unlike the first version, but they were allocated in 
a static location and had a fixed size. 

The third, and current, version completes the basic capabilities of the inter
face. Although it does not yet manage windows in the desired manner, it does 
have the ability to create objects and fill in slots. General queries and global 
relational updates are not currently supported, but only require query (or update) 
objects to be able to be defined and executed. Executing a query involves 
translating it into QUEL and sending it to INGRES, with the result displayed in 
a newly-allocated window. 

5.6 Performance 

Throughout this thesis we have focused on power and largely ignored per
formance. This focus has not been because we think performance is unimportant, 
but because experience has led us to prefer to tune a general, powerful solution ro
a problem than to extend the power of an already tuned system. 

Since we have not had the time to do a careful analysis of the performance 
of any of the pieces of OMEGA, it is somewhat misleading to present any execu
tion time measurements of parse or peruse. Nonetheless, our experience is 
undoubtedly of interest, so we present some simple measurements. 

5.6.1 Execution Time 

Figure 5.4 sho,vs a table with execution times for the time it takes parse to 
process the DEMOS kernel and store the resulting information in the database, 
and the time it takes peruse, using compiled queries and buffering as described 
earlier, to zoom in on the body of the main procedure of DEMOS. For com
parison purposes, the time parse takes to perform the parsing and type analysis 
phases, without storing into the database, is also shown. 
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Operation 
CPU time Elapsed time 
(seconds) (mm:ss) 

parsing DEMOS and storing in database 422.1 27:29 

parsincr DEMOS only 53.3 1:32 

peruse main body 276.6 11:36 

Figure 5.4: Time measurements for parse and peruse. 

The time it· takes to zoom in on the main body of DEMOS is an interesting 

benchmark, but does not reflect actual response time since the main body of 

DEMOS is fairly large (over 3000 tuples, the equivalent of nearly 1000 lines of 

text). Ideally, peruse should stop retrieving tuples when the output will no 

longer fit on the screen, and the picture data structure that is built from the out

put of a query should be filled on demand instead of all at onc"t•. 

5.6.2 Storage Requirements , 

The table in Figure .5.5 shows the number of tuples and total size of the 

largest relations in the database. Although the total size is close to that of the 

corresponding text, this is somewhat misleading because it does not include space 

for indices (in this case hash tables) or comments. The elimination of comments 

was done for simplicity; there is no reason they could not also be stored. 
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relation # tuples 
width total size 
(bvtes) (bvtes) 

pictog;raphs 1563 84 131292 
tvpeof 4521 16 72336 
exprlists 3507 16 56112 
parameters 1720 20 34400 
functions 712 40 28480 
stmtlists 1567 16 25072 
fieldrefs 1471 16 23536 
paramlists 1720 12 20640 
decls 1180 16 18880 
fcalls 1473 12 17676 
asg_stmts 812 20 16240 

.Pictof 1001 12 12012 
procedures 399 24 9576 
condlists 314 24 7536 
intcons 700 8 5600 
variables 338 16 5408 
callstmts 448 12 5376 
fields 335 16 5360 
constants 292 16 4672 
ifthens 290 16 4640 
OTHERS 2115 - 38372 

total 26515 - 536316 

size of text - - 418792 

Figure 5.5: Space usage in database for DEMOS kernel. 

5.6.3 Analysis 

The critical performance problem is response time in peruse, which is 

roughly an order of magnitude too slow. In general, the database system should 

be able to use main memory and semantic information, such as denoted by tuple 

references, to provide substantially better performance. Particular issues in the 

performance of current relational systems are discussed in more detail in (Cham

berlain, et al. 81], (Stonebraker, et al. 83], and [Bitton, DeWitt, Turbyfill83]. 

Improved data management algorithms will be a major factor in improving 

the performance of OMEGA, the other major factor will be running the system 

on faster hardware. Within five years it is likely that most programmers will use 

personal workstations that have the same or greater computing capacity than the 

VAX that we currently share with 10 to 20 other users. 
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The size of programs and in_formation pertaining to programs is growing, 

meaning it will be necessary to continue to analyze system performance and look 

for techniques to improve it. We are convinced the use of a general-purpose 

database system to manage all program information will soon be practical in 

terms of performance when compared with conventional systems. The algo

rithmic complexity of database algorithms is sublinear whereas the text-oriented 

algorithms require linear time; it is only a matter of time be.fore the increase in 

volume of information and reduction in database overhead makes the database 

approach faster. 

It is true that it will always be possible to construct a special-purpose data

base system tuned to managing program information that is faster than the 

general-purpose system. Similarly, it is always possible to write assembly 

language by hand that executes faster than that generated by a compiler. How

ever, just as for writing in a high-level language, it will be worth the slight loss in 

efficiency to use the more general, better supported, and mqre reliable system. 

General-purpose database systems are rapidly approaching this threshold of being 

cost-effective for use in managing program information. 

5.7 Conclusions 

We did not attempt a complete implementation of OMEGA; such an effort 

would have been premature. Instead we have experimented with the program 

database and user interface pieces of the system. 

"Ve have built parse, a program that takes Model source text and stores all 

the information in the program into a database managed by INGRES. Parse 

recognizes the full Model language and has been used to load a medium size pro

gram (DEMOS) into the database. 

"-v\r e have also built peruse, a program that displays information from the 

database onto the screen in a traditional text format. Peruse processes single 

keystroke input commands that allow the full power of the database to be 

accessed without using a command syntax or names to refer to objects. 

Overall, we are pleased with the results of using INGRES. Although there 

are problems with performance, we have not had to worry at all about managing 

permanent storage or processing queries. The ability to define general views was 

particularly useful. 

Our experience interfacing to INGRES has affected the ideas presented in 

Chapter 3. In particular, doing this implementation and examining the resulting 

problems helped produce the idea of tuple references. 

We have not had as much experience in implementing the user interface as 

we would have liked, due both to time limitations and lack of hardware with the 

power we wish to use. Whereas with the database we had a powerful, albeit 

slow, system, we simply did not the have terminal capabilities with which we 

wanted to experiment. 
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y.,r e did implement enough of_ the user interface to realize that window allo

cation was an important issue. This realization was a surprise; we had expected 

to be able to use an existing window allocation scheme. 



Chapter 6 

Conclusions ~nd Future Directions 

And here I sit so patiently, 
waiting to find out what price 
you have to pay to get out of 
going through all these things twice. 

- from the song Stuck inside of Mobile with the Memphis Blues Again 

by Bob Dylan 

6.1 The Software Beast {reprise) 
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We began this thesis by describing our perception of why software is a 

"beast" that is so difficult to control. The major reason for the beast's strength 

is that in existing environments it is difficult for programmers to get a good view 

of software that has already been written, and therefore constantly re-implement 

algorithms. 

To attack these problems we focused on system support for viewing and 

manipulating existing pieces of software. Now, after visiting other programming 

environments, traveling through the land of relational database systems, and syn

thesizing a user interface centered on the use of pointing, we conclude by sum

marizing the ideas of our work and describing problems for future research. At 

the end of the chapter we finish this dissertation with some general thoughts on 

our expenence. 

6.2 Summary of Work 

The ideas in OMEGA have been aimed primarily at supporting flexible 

visual and logical manipulation of large software systems. To support manipula

tion of programs, we have designed an interface to a relational database system 

to provide a mechanism for querying and modifying software. \Ve have built an 

experimental interface to the INGRES database system and used it to store and 

retrieve programs written in Model. 

The use of a database system provides a more general and powerful 

mechanism for manipulating software than is available in current software 

development environments. If there is one point in this thesis that is more 

important than any other, it is that using a general-purpose database system to 

manage program objects offers significant advantages over text-oriented or 

special-purpose systems. 
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The medium of communication between programmer and system is equally 

important as the data that is transmitted. We have designed a medium similar 

to that provided by Smalltalk, generalizing the interface to consistently use 

pointing at objects as the means of conversing. 

Pointing avoids traditional obstacles to software development such as syn

tax errors and mistyped identifiers. As a result, concepts that are normally 

offered in separate languages (e.g., pipes in UNIX and procedures in Pascal) can 

be integrated together without sacrificing the visual presentation. 

Using the database concept of integrity constraints adds interactive seman

tic checking to OMEGA so that errors can be detected as soon as possible. This 

facility, combined with an extended notion of a database transaction, provides a 

systematic and flexible mechanism for ensuring that only meaningful (though not 

necessarily correct) programs objects are created. 

We have implemented the basic elements of the user interface to allow 

browsing and querying of information in the database using pointing. Our imple

mentation uncovered important problems in allocating and positioning windows, 

and we have begun to develop solutions to these problems. Due to time and 

hardware constraints, we have not been able to experiment with this interface 

and satisfactorily evaluate its usefulness. 

6.3 Future Directions 

Although this chapter completes this dissertation, there is much work to be 

done to further test and refine our ideas as well as solve new problems. Overall, 

we would like to continue trying out ideas that will take the implementation of 

OMEGA toward a complete and usable system, both for our own use in further 

experimentation and to confirm that our approach is practical. In addition, we 

would like to generalize our solutions so that they can be applied to other 

interactive computing environments. 

There are many problems that need to be solved to achieve these goals. 

\Ve will discuss the following areas in more detail: 

• analyzing and improving the performance of the databa..<>e interface, 

• executing and debugging programs stored in the database 

• experimenting with the user interface on a graphics terminal 

• application to office information and VLSI design environments 
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6.3.1 Database Interface 

Currently, the database system is certainly the bottleneck of OMEGA in 

terms of performance. In Chapter 3 we suggested tuple references as a way of 

providing the database system with the information .necessary to enable it to 

cache and prefetch tuples in memory, and thereby reduce the cost of simple 

queries that retrieve individual tuples. Caching in general offers great gains, but 

conflicts with equally important crash recovery and concurrency control facilities. 

General techniques for caching data in memory and processing queries on it 

will even be more important for larger databases. The database we created in 

our implementation corresponds to a relatively small piece of software (about 

10,000 lines). If this approach is to be applicable to systems several orders of 

magnitude larger, we must be able to use logical information in the database to 

restrict the amount of data that has to be searched. For example, a programmer 

working on a single module will rarely access information in the database outside 

that module. 

In Chapter 3 we also noted that for certain queries we need to be able to 

search the transitive closure of a binary relation. Although the semantics of this 

operation are well-defined, it is not immediately obvious what the correct imple

mentation should be. It may be desirable to retain a previously computed clo

sure, but the tradeoff in additional cost for updates needs to be examined more 

closely. 

Finally, our experience is limited to a single data model, schema, and data

base system. It would be helpful in understanding the effects of database system 

facilities on the performance of OMEGA to be able to compare the same opera

tions with different systems. 

Although peruse has evolved to become schema independent, it is still 

dependent on INGRES. We need a single interface that can be adapted to 

different database systems. 

6.3.2 Execution and Debugging 

For OMEGA to be usable, it must be possible to run the programs that are 

stored in the database. Generating code is primarily a matter of traversing the 

information in the database, but there are interesting issues concerning what 

information should be stored back into the database (e.g., storage locations, a 

record of optimizations performed) and what additional information should be 

kept in the database incrementally to aid code generation (e.g., data flow infor

mation). 

The question of what information a code generator should add to the data

base is related to the debugging facilities that are to be provided. In O.tvfEGA, 

the program monitor will undoubtedly need to share information with the code 

generator. Further implementation of both creating and debugging executable 

programs is necessary to determine the best way to support these facilities. 
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In Chapter 4 we shm.,:ed how to specify debugging events as relational 
qualifications on the information in (or virtually in) the database. This approach 
provides a powerful, high-level description of events, but complicates the transla
tion of these conditions into low-level actions such as machine traps on references 
to particular instructions or data. 

The optimal translation of an event, the one that degrades execution the 
least while correctly detecting the event, is dependent on the target machine, 
operating system, code generator, and language. \Ve nee(! ::. :node! and analysis 
of target hardware systems coupled with a characterization of debugging events 
that provides an algorithm for optimal translation. 

6.3.3 Graphical Interface 

Although we have designed and partially implemented the graphical inter
face described in Chapter 4, we have not been able to experiment with using it. 
We would like to actually use the interface to evaluate how effective it is in 
manipulating programs. 

We suspect that relying on pointing may at times be verbose; that is, many 
objects may have to be selected for a relatively simple operation. To solve this 
problem we would need to provide some "shorthand" for this class of operations. 
To correctly "tune" the user interface in this manner requires more experimenta
tion with its implementation. 

Fundamentally, we want to be able to easily modify a piece of software for 
a slightly different use. We therefore also need to experiment with the user inter
face to find out how conveniently it allows these kinds of manipulations, and 
work to solve problems that may be encountered. 

6.3.4 Application to Other Environments 

Many of the problems in managing software are general problems that arise 
in other applications. We have tried to find general solutions to the specific 
problems of a programming system, and would like to see if these solutions can 
be applied to other environments. 

The model of a graphical, pointing-oriented interface to a general-purpose 
database system is representative of many interactive computing systems. \Ve 

would particularly like to experiment with our ideas for office information and 
VLSI design environments. 

Forms [Tsichritzis 83] in office systems are similar in many ways to our 
abstractions and pictographs, and the problems of VLSI design data [Katz 82] are 
quite similar to our problems in managing program information. Both environ
ments have been developed independently of software environments, it would be 
beneficial for both areas to look into exchanging and merging ideas. 
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6.4 Concluding Remarks 

Just as we have promoted the use of existing software in the construction of 

new programs, throughout this thesis we have tried to use ideas from other pro

gramming environments and research on database systems to design and partially 

implement OMEGA. 

To adapt ideas such as the relational data model and the Smalltalk 

medium, we first had to understand and generalize the problems we were trying 

to solve. An important part of understanding and generalizing these problems 

depended on separating the semantics of each problem from a potential imple

mentation of its solution. 

We hope by generalizing and building upon previous good ideas this thesis 

is a step toward a time when building upon good software is easy and straightfor

ward, not weighed down by problems of information management and visual 

presentation. 
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